new ip
This commit is contained in:
910
plotter-app/venv/lib/python3.8/site-packages/numpy/LICENSE.txt
Normal file
910
plotter-app/venv/lib/python3.8/site-packages/numpy/LICENSE.txt
Normal file
@@ -0,0 +1,910 @@
|
||||
Copyright (c) 2005-2022, NumPy Developers.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of the NumPy Developers nor the names of any
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
----
|
||||
|
||||
This binary distribution of NumPy also bundles the following software:
|
||||
|
||||
|
||||
Name: OpenBLAS
|
||||
Files: .libs/libopenb*.so
|
||||
Description: bundled as a dynamically linked library
|
||||
Availability: https://github.com/xianyi/OpenBLAS/
|
||||
License: 3-clause BSD
|
||||
Copyright (c) 2011-2014, The OpenBLAS Project
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
3. Neither the name of the OpenBLAS project nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Name: LAPACK
|
||||
Files: .libs/libopenb*.so
|
||||
Description: bundled in OpenBLAS
|
||||
Availability: https://github.com/xianyi/OpenBLAS/
|
||||
License 3-clause BSD
|
||||
Copyright (c) 1992-2013 The University of Tennessee and The University
|
||||
of Tennessee Research Foundation. All rights
|
||||
reserved.
|
||||
Copyright (c) 2000-2013 The University of California Berkeley. All
|
||||
rights reserved.
|
||||
Copyright (c) 2006-2013 The University of Colorado Denver. All rights
|
||||
reserved.
|
||||
|
||||
$COPYRIGHT$
|
||||
|
||||
Additional copyrights may follow
|
||||
|
||||
$HEADER$
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer listed
|
||||
in this license in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
- Neither the name of the copyright holders nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
The copyright holders provide no reassurances that the source code
|
||||
provided does not infringe any patent, copyright, or any other
|
||||
intellectual property rights of third parties. The copyright holders
|
||||
disclaim any liability to any recipient for claims brought against
|
||||
recipient by any third party for infringement of that parties
|
||||
intellectual property rights.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Name: GCC runtime library
|
||||
Files: .libs/libgfortran*.so
|
||||
Description: dynamically linked to files compiled with gcc
|
||||
Availability: https://gcc.gnu.org/viewcvs/gcc/
|
||||
License: GPLv3 + runtime exception
|
||||
Copyright (C) 2002-2017 Free Software Foundation, Inc.
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 3, or (at your option)
|
||||
any later version.
|
||||
|
||||
Libgfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
Under Section 7 of GPL version 3, you are granted additional
|
||||
permissions described in the GCC Runtime Library Exception, version
|
||||
3.1, as published by the Free Software Foundation.
|
||||
|
||||
You should have received a copy of the GNU General Public License and
|
||||
a copy of the GCC Runtime Library Exception along with this program;
|
||||
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
----
|
||||
|
||||
Full text of license texts referred to above follows (that they are
|
||||
listed below does not necessarily imply the conditions apply to the
|
||||
present binary release):
|
||||
|
||||
----
|
||||
|
||||
GCC RUNTIME LIBRARY EXCEPTION
|
||||
|
||||
Version 3.1, 31 March 2009
|
||||
|
||||
Copyright (C) 2009 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies of this
|
||||
license document, but changing it is not allowed.
|
||||
|
||||
This GCC Runtime Library Exception ("Exception") is an additional
|
||||
permission under section 7 of the GNU General Public License, version
|
||||
3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
|
||||
bears a notice placed by the copyright holder of the file stating that
|
||||
the file is governed by GPLv3 along with this Exception.
|
||||
|
||||
When you use GCC to compile a program, GCC may combine portions of
|
||||
certain GCC header files and runtime libraries with the compiled
|
||||
program. The purpose of this Exception is to allow compilation of
|
||||
non-GPL (including proprietary) programs to use, in this way, the
|
||||
header files and runtime libraries covered by this Exception.
|
||||
|
||||
0. Definitions.
|
||||
|
||||
A file is an "Independent Module" if it either requires the Runtime
|
||||
Library for execution after a Compilation Process, or makes use of an
|
||||
interface provided by the Runtime Library, but is not otherwise based
|
||||
on the Runtime Library.
|
||||
|
||||
"GCC" means a version of the GNU Compiler Collection, with or without
|
||||
modifications, governed by version 3 (or a specified later version) of
|
||||
the GNU General Public License (GPL) with the option of using any
|
||||
subsequent versions published by the FSF.
|
||||
|
||||
"GPL-compatible Software" is software whose conditions of propagation,
|
||||
modification and use would permit combination with GCC in accord with
|
||||
the license of GCC.
|
||||
|
||||
"Target Code" refers to output from any compiler for a real or virtual
|
||||
target processor architecture, in executable form or suitable for
|
||||
input to an assembler, loader, linker and/or execution
|
||||
phase. Notwithstanding that, Target Code does not include data in any
|
||||
format that is used as a compiler intermediate representation, or used
|
||||
for producing a compiler intermediate representation.
|
||||
|
||||
The "Compilation Process" transforms code entirely represented in
|
||||
non-intermediate languages designed for human-written code, and/or in
|
||||
Java Virtual Machine byte code, into Target Code. Thus, for example,
|
||||
use of source code generators and preprocessors need not be considered
|
||||
part of the Compilation Process, since the Compilation Process can be
|
||||
understood as starting with the output of the generators or
|
||||
preprocessors.
|
||||
|
||||
A Compilation Process is "Eligible" if it is done using GCC, alone or
|
||||
with other GPL-compatible software, or if it is done without using any
|
||||
work based on GCC. For example, using non-GPL-compatible Software to
|
||||
optimize any GCC intermediate representations would not qualify as an
|
||||
Eligible Compilation Process.
|
||||
|
||||
1. Grant of Additional Permission.
|
||||
|
||||
You have permission to propagate a work of Target Code formed by
|
||||
combining the Runtime Library with Independent Modules, even if such
|
||||
propagation would otherwise violate the terms of GPLv3, provided that
|
||||
all Target Code was generated by Eligible Compilation Processes. You
|
||||
may then convey such a combination under terms of your choice,
|
||||
consistent with the licensing of the Independent Modules.
|
||||
|
||||
2. No Weakening of GCC Copyleft.
|
||||
|
||||
The availability of this Exception does not imply any general
|
||||
presumption that third-party software is unaffected by the copyleft
|
||||
requirements of the license of GCC.
|
||||
|
||||
----
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
||||
115
plotter-app/venv/lib/python3.8/site-packages/numpy/__config__.py
Normal file
115
plotter-app/venv/lib/python3.8/site-packages/numpy/__config__.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# This file is generated by numpy's setup.py
|
||||
# It contains system_info results at the time of building this package.
|
||||
__all__ = ["get_info","show"]
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
extra_dll_dir = os.path.join(os.path.dirname(__file__), '.libs')
|
||||
|
||||
if sys.platform == 'win32' and os.path.isdir(extra_dll_dir):
|
||||
os.add_dll_directory(extra_dll_dir)
|
||||
|
||||
openblas64__info={'libraries': ['openblas64_', 'openblas64_'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
blas_ilp64_opt_info={'libraries': ['openblas64_', 'openblas64_'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
openblas64__lapack_info={'libraries': ['openblas64_', 'openblas64_'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None), ('HAVE_LAPACKE', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
lapack_ilp64_opt_info={'libraries': ['openblas64_', 'openblas64_'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None), ('HAVE_LAPACKE', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
|
||||
def get_info(name):
|
||||
g = globals()
|
||||
return g.get(name, g.get(name + "_info", {}))
|
||||
|
||||
def show():
|
||||
"""
|
||||
Show libraries in the system on which NumPy was built.
|
||||
|
||||
Print information about various resources (libraries, library
|
||||
directories, include directories, etc.) in the system on which
|
||||
NumPy was built.
|
||||
|
||||
See Also
|
||||
--------
|
||||
get_include : Returns the directory containing NumPy C
|
||||
header files.
|
||||
|
||||
Notes
|
||||
-----
|
||||
1. Classes specifying the information to be printed are defined
|
||||
in the `numpy.distutils.system_info` module.
|
||||
|
||||
Information may include:
|
||||
|
||||
* ``language``: language used to write the libraries (mostly
|
||||
C or f77)
|
||||
* ``libraries``: names of libraries found in the system
|
||||
* ``library_dirs``: directories containing the libraries
|
||||
* ``include_dirs``: directories containing library header files
|
||||
* ``src_dirs``: directories containing library source files
|
||||
* ``define_macros``: preprocessor macros used by
|
||||
``distutils.setup``
|
||||
* ``baseline``: minimum CPU features required
|
||||
* ``found``: dispatched features supported in the system
|
||||
* ``not found``: dispatched features that are not supported
|
||||
in the system
|
||||
|
||||
2. NumPy BLAS/LAPACK Installation Notes
|
||||
|
||||
Installing a numpy wheel (``pip install numpy`` or force it
|
||||
via ``pip install numpy --only-binary :numpy: numpy``) includes
|
||||
an OpenBLAS implementation of the BLAS and LAPACK linear algebra
|
||||
APIs. In this case, ``library_dirs`` reports the original build
|
||||
time configuration as compiled with gcc/gfortran; at run time
|
||||
the OpenBLAS library is in
|
||||
``site-packages/numpy.libs/`` (linux), or
|
||||
``site-packages/numpy/.dylibs/`` (macOS), or
|
||||
``site-packages/numpy/.libs/`` (windows).
|
||||
|
||||
Installing numpy from source
|
||||
(``pip install numpy --no-binary numpy``) searches for BLAS and
|
||||
LAPACK dynamic link libraries at build time as influenced by
|
||||
environment variables NPY_BLAS_LIBS, NPY_CBLAS_LIBS, and
|
||||
NPY_LAPACK_LIBS; or NPY_BLAS_ORDER and NPY_LAPACK_ORDER;
|
||||
or the optional file ``~/.numpy-site.cfg``.
|
||||
NumPy remembers those locations and expects to load the same
|
||||
libraries at run-time.
|
||||
In NumPy 1.21+ on macOS, 'accelerate' (Apple's Accelerate BLAS
|
||||
library) is in the default build-time search order after
|
||||
'openblas'.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.show_config()
|
||||
blas_opt_info:
|
||||
language = c
|
||||
define_macros = [('HAVE_CBLAS', None)]
|
||||
libraries = ['openblas', 'openblas']
|
||||
library_dirs = ['/usr/local/lib']
|
||||
"""
|
||||
from numpy.core._multiarray_umath import (
|
||||
__cpu_features__, __cpu_baseline__, __cpu_dispatch__
|
||||
)
|
||||
for name,info_dict in globals().items():
|
||||
if name[0] == "_" or type(info_dict) is not type({}): continue
|
||||
print(name + ":")
|
||||
if not info_dict:
|
||||
print(" NOT AVAILABLE")
|
||||
for k,v in info_dict.items():
|
||||
v = str(v)
|
||||
if k == "sources" and len(v) > 200:
|
||||
v = v[:60] + " ...\n... " + v[-60:]
|
||||
print(" %s = %s" % (k,v))
|
||||
|
||||
features_found, features_not_found = [], []
|
||||
for feature in __cpu_dispatch__:
|
||||
if __cpu_features__[feature]:
|
||||
features_found.append(feature)
|
||||
else:
|
||||
features_not_found.append(feature)
|
||||
|
||||
print("Supported SIMD extensions in this NumPy install:")
|
||||
print(" baseline = %s" % (','.join(__cpu_baseline__)))
|
||||
print(" found = %s" % (','.join(features_found)))
|
||||
print(" not found = %s" % (','.join(features_not_found)))
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
1017
plotter-app/venv/lib/python3.8/site-packages/numpy/__init__.pxd
Normal file
1017
plotter-app/venv/lib/python3.8/site-packages/numpy/__init__.pxd
Normal file
File diff suppressed because it is too large
Load Diff
439
plotter-app/venv/lib/python3.8/site-packages/numpy/__init__.py
Normal file
439
plotter-app/venv/lib/python3.8/site-packages/numpy/__init__.py
Normal file
@@ -0,0 +1,439 @@
|
||||
"""
|
||||
NumPy
|
||||
=====
|
||||
|
||||
Provides
|
||||
1. An array object of arbitrary homogeneous items
|
||||
2. Fast mathematical operations over arrays
|
||||
3. Linear Algebra, Fourier Transforms, Random Number Generation
|
||||
|
||||
How to use the documentation
|
||||
----------------------------
|
||||
Documentation is available in two forms: docstrings provided
|
||||
with the code, and a loose standing reference guide, available from
|
||||
`the NumPy homepage <https://numpy.org>`_.
|
||||
|
||||
We recommend exploring the docstrings using
|
||||
`IPython <https://ipython.org>`_, an advanced Python shell with
|
||||
TAB-completion and introspection capabilities. See below for further
|
||||
instructions.
|
||||
|
||||
The docstring examples assume that `numpy` has been imported as ``np``::
|
||||
|
||||
>>> import numpy as np
|
||||
|
||||
Code snippets are indicated by three greater-than signs::
|
||||
|
||||
>>> x = 42
|
||||
>>> x = x + 1
|
||||
|
||||
Use the built-in ``help`` function to view a function's docstring::
|
||||
|
||||
>>> help(np.sort)
|
||||
... # doctest: +SKIP
|
||||
|
||||
For some objects, ``np.info(obj)`` may provide additional help. This is
|
||||
particularly true if you see the line "Help on ufunc object:" at the top
|
||||
of the help() page. Ufuncs are implemented in C, not Python, for speed.
|
||||
The native Python help() does not know how to view their help, but our
|
||||
np.info() function does.
|
||||
|
||||
To search for documents containing a keyword, do::
|
||||
|
||||
>>> np.lookfor('keyword')
|
||||
... # doctest: +SKIP
|
||||
|
||||
General-purpose documents like a glossary and help on the basic concepts
|
||||
of numpy are available under the ``doc`` sub-module::
|
||||
|
||||
>>> from numpy import doc
|
||||
>>> help(doc)
|
||||
... # doctest: +SKIP
|
||||
|
||||
Available subpackages
|
||||
---------------------
|
||||
lib
|
||||
Basic functions used by several sub-packages.
|
||||
random
|
||||
Core Random Tools
|
||||
linalg
|
||||
Core Linear Algebra Tools
|
||||
fft
|
||||
Core FFT routines
|
||||
polynomial
|
||||
Polynomial tools
|
||||
testing
|
||||
NumPy testing tools
|
||||
distutils
|
||||
Enhancements to distutils with support for
|
||||
Fortran compilers support and more.
|
||||
|
||||
Utilities
|
||||
---------
|
||||
test
|
||||
Run numpy unittests
|
||||
show_config
|
||||
Show numpy build configuration
|
||||
dual
|
||||
Overwrite certain functions with high-performance SciPy tools.
|
||||
Note: `numpy.dual` is deprecated. Use the functions from NumPy or Scipy
|
||||
directly instead of importing them from `numpy.dual`.
|
||||
matlib
|
||||
Make everything matrices.
|
||||
__version__
|
||||
NumPy version string
|
||||
|
||||
Viewing documentation using IPython
|
||||
-----------------------------------
|
||||
|
||||
Start IPython and import `numpy` usually under the alias ``np``: `import
|
||||
numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste
|
||||
examples into the shell. To see which functions are available in `numpy`,
|
||||
type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
|
||||
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
|
||||
down the list. To view the docstring for a function, use
|
||||
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
|
||||
the source code).
|
||||
|
||||
Copies vs. in-place operation
|
||||
-----------------------------
|
||||
Most of the functions in `numpy` return a copy of the array argument
|
||||
(e.g., `np.sort`). In-place versions of these functions are often
|
||||
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
|
||||
Exceptions to this rule are documented.
|
||||
|
||||
"""
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from ._globals import (
|
||||
ModuleDeprecationWarning, VisibleDeprecationWarning,
|
||||
_NoValue, _CopyMode
|
||||
)
|
||||
|
||||
# We first need to detect if we're being called as part of the numpy setup
|
||||
# procedure itself in a reliable manner.
|
||||
try:
|
||||
__NUMPY_SETUP__
|
||||
except NameError:
|
||||
__NUMPY_SETUP__ = False
|
||||
|
||||
if __NUMPY_SETUP__:
|
||||
sys.stderr.write('Running from numpy source directory.\n')
|
||||
else:
|
||||
try:
|
||||
from numpy.__config__ import show as show_config
|
||||
except ImportError as e:
|
||||
msg = """Error importing numpy: you should not try to import numpy from
|
||||
its source directory; please exit the numpy source tree, and relaunch
|
||||
your python interpreter from there."""
|
||||
raise ImportError(msg) from e
|
||||
|
||||
__all__ = ['ModuleDeprecationWarning',
|
||||
'VisibleDeprecationWarning']
|
||||
|
||||
# mapping of {name: (value, deprecation_msg)}
|
||||
__deprecated_attrs__ = {}
|
||||
|
||||
# Allow distributors to run custom init code
|
||||
from . import _distributor_init
|
||||
|
||||
from . import core
|
||||
from .core import *
|
||||
from . import compat
|
||||
from . import lib
|
||||
# NOTE: to be revisited following future namespace cleanup.
|
||||
# See gh-14454 and gh-15672 for discussion.
|
||||
from .lib import *
|
||||
|
||||
from . import linalg
|
||||
from . import fft
|
||||
from . import polynomial
|
||||
from . import random
|
||||
from . import ctypeslib
|
||||
from . import ma
|
||||
from . import matrixlib as _mat
|
||||
from .matrixlib import *
|
||||
|
||||
# Deprecations introduced in NumPy 1.20.0, 2020-06-06
|
||||
import builtins as _builtins
|
||||
|
||||
_msg = (
|
||||
"module 'numpy' has no attribute '{n}'.\n"
|
||||
"`np.{n}` was a deprecated alias for the builtin `{n}`. "
|
||||
"To avoid this error in existing code, use `{n}` by itself. "
|
||||
"Doing this will not modify any behavior and is safe. {extended_msg}\n"
|
||||
"The aliases was originally deprecated in NumPy 1.20; for more "
|
||||
"details and guidance see the original release note at:\n"
|
||||
" https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
|
||||
|
||||
_specific_msg = (
|
||||
"If you specifically wanted the numpy scalar type, use `np.{}` here.")
|
||||
|
||||
_int_extended_msg = (
|
||||
"When replacing `np.{}`, you may wish to use e.g. `np.int64` "
|
||||
"or `np.int32` to specify the precision. If you wish to review "
|
||||
"your current use, check the release note link for "
|
||||
"additional information.")
|
||||
|
||||
_type_info = [
|
||||
("object", ""), # The NumPy scalar only exists by name.
|
||||
("bool", _specific_msg.format("bool_")),
|
||||
("float", _specific_msg.format("float64")),
|
||||
("complex", _specific_msg.format("complex128")),
|
||||
("str", _specific_msg.format("str_")),
|
||||
("int", _int_extended_msg.format("int"))]
|
||||
|
||||
__former_attrs__ = {
|
||||
n: _msg.format(n=n, extended_msg=extended_msg)
|
||||
for n, extended_msg in _type_info
|
||||
}
|
||||
|
||||
# Future warning introduced in NumPy 1.24.0, 2022-11-17
|
||||
_msg = (
|
||||
"`np.{n}` is a deprecated alias for `{an}`. (Deprecated NumPy 1.24)")
|
||||
|
||||
# Some of these are awkward (since `np.str` may be preferable in the long
|
||||
# term), but overall the names ending in 0 seem undesireable
|
||||
_type_info = [
|
||||
("bool8", bool_, "np.bool_"),
|
||||
("int0", intp, "np.intp"),
|
||||
("uint0", uintp, "np.uintp"),
|
||||
("str0", str_, "np.str_"),
|
||||
("bytes0", bytes_, "np.bytes_"),
|
||||
("void0", void, "np.void"),
|
||||
("object0", object_,
|
||||
"`np.object0` is a deprecated alias for `np.object_`. "
|
||||
"`object` can be used instead. (Deprecated NumPy 1.24)")]
|
||||
|
||||
# Some of these could be defined right away, but most were aliases to
|
||||
# the Python objects and only removed in NumPy 1.24. Defining them should
|
||||
# probably wait for NumPy 1.26 or 2.0.
|
||||
# When defined, these should possibly not be added to `__all__` to avoid
|
||||
# import with `from numpy import *`.
|
||||
__future_scalars__ = {"bool", "long", "ulong", "str", "bytes", "object"}
|
||||
|
||||
__deprecated_attrs__.update({
|
||||
n: (alias, _msg.format(n=n, an=an)) for n, alias, an in _type_info})
|
||||
|
||||
del _msg, _type_info
|
||||
|
||||
from .core import round, abs, max, min
|
||||
# now that numpy modules are imported, can initialize limits
|
||||
core.getlimits._register_known_types()
|
||||
|
||||
__all__.extend(['__version__', 'show_config'])
|
||||
__all__.extend(core.__all__)
|
||||
__all__.extend(_mat.__all__)
|
||||
__all__.extend(lib.__all__)
|
||||
__all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
|
||||
|
||||
# Remove one of the two occurrences of `issubdtype`, which is exposed as
|
||||
# both `numpy.core.issubdtype` and `numpy.lib.issubdtype`.
|
||||
__all__.remove('issubdtype')
|
||||
|
||||
# These are exported by np.core, but are replaced by the builtins below
|
||||
# remove them to ensure that we don't end up with `np.long == np.int_`,
|
||||
# which would be a breaking change.
|
||||
del long, unicode
|
||||
__all__.remove('long')
|
||||
__all__.remove('unicode')
|
||||
|
||||
# Remove things that are in the numpy.lib but not in the numpy namespace
|
||||
# Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
|
||||
# that prevents adding more things to the main namespace by accident.
|
||||
# The list below will grow until the `from .lib import *` fixme above is
|
||||
# taken care of
|
||||
__all__.remove('Arrayterator')
|
||||
del Arrayterator
|
||||
|
||||
# These names were removed in NumPy 1.20. For at least one release,
|
||||
# attempts to access these names in the numpy namespace will trigger
|
||||
# a warning, and calling the function will raise an exception.
|
||||
_financial_names = ['fv', 'ipmt', 'irr', 'mirr', 'nper', 'npv', 'pmt',
|
||||
'ppmt', 'pv', 'rate']
|
||||
__expired_functions__ = {
|
||||
name: (f'In accordance with NEP 32, the function {name} was removed '
|
||||
'from NumPy version 1.20. A replacement for this function '
|
||||
'is available in the numpy_financial library: '
|
||||
'https://pypi.org/project/numpy-financial')
|
||||
for name in _financial_names}
|
||||
|
||||
# Filter out Cython harmless warnings
|
||||
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||||
|
||||
# oldnumeric and numarray were removed in 1.9. In case some packages import
|
||||
# but do not use them, we define them here for backward compatibility.
|
||||
oldnumeric = 'removed'
|
||||
numarray = 'removed'
|
||||
|
||||
def __getattr__(attr):
|
||||
# Warn for expired attributes, and return a dummy function
|
||||
# that always raises an exception.
|
||||
import warnings
|
||||
try:
|
||||
msg = __expired_functions__[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||||
|
||||
def _expired(*args, **kwds):
|
||||
raise RuntimeError(msg)
|
||||
|
||||
return _expired
|
||||
|
||||
# Emit warnings for deprecated attributes
|
||||
try:
|
||||
val, msg = __deprecated_attrs__[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||||
return val
|
||||
|
||||
if attr in __future_scalars__:
|
||||
# And future warnings for those that will change, but also give
|
||||
# the AttributeError
|
||||
warnings.warn(
|
||||
f"In the future `np.{attr}` will be defined as the "
|
||||
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
|
||||
|
||||
if attr in __former_attrs__:
|
||||
raise AttributeError(__former_attrs__[attr])
|
||||
|
||||
# Importing Tester requires importing all of UnitTest which is not a
|
||||
# cheap import Since it is mainly used in test suits, we lazy import it
|
||||
# here to save on the order of 10 ms of import time for most users
|
||||
#
|
||||
# The previous way Tester was imported also had a side effect of adding
|
||||
# the full `numpy.testing` namespace
|
||||
if attr == 'testing':
|
||||
import numpy.testing as testing
|
||||
return testing
|
||||
elif attr == 'Tester':
|
||||
from .testing import Tester
|
||||
return Tester
|
||||
|
||||
raise AttributeError("module {!r} has no attribute "
|
||||
"{!r}".format(__name__, attr))
|
||||
|
||||
def __dir__():
|
||||
public_symbols = globals().keys() | {'Tester', 'testing'}
|
||||
public_symbols -= {
|
||||
"core", "matrixlib",
|
||||
}
|
||||
return list(public_symbols)
|
||||
|
||||
# Pytest testing
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
def _sanity_check():
|
||||
"""
|
||||
Quick sanity checks for common bugs caused by environment.
|
||||
There are some cases e.g. with wrong BLAS ABI that cause wrong
|
||||
results under specific runtime conditions that are not necessarily
|
||||
achieved during test suite runs, and it is useful to catch those early.
|
||||
|
||||
See https://github.com/numpy/numpy/issues/8577 and other
|
||||
similar bug reports.
|
||||
|
||||
"""
|
||||
try:
|
||||
x = ones(2, dtype=float32)
|
||||
if not abs(x.dot(x) - float32(2.0)) < 1e-5:
|
||||
raise AssertionError()
|
||||
except AssertionError:
|
||||
msg = ("The current Numpy installation ({!r}) fails to "
|
||||
"pass simple sanity checks. This can be caused for example "
|
||||
"by incorrect BLAS library being linked in, or by mixing "
|
||||
"package managers (pip, conda, apt, ...). Search closed "
|
||||
"numpy issues for similar problems.")
|
||||
raise RuntimeError(msg.format(__file__)) from None
|
||||
|
||||
_sanity_check()
|
||||
del _sanity_check
|
||||
|
||||
def _mac_os_check():
|
||||
"""
|
||||
Quick Sanity check for Mac OS look for accelerate build bugs.
|
||||
Testing numpy polyfit calls init_dgelsd(LAPACK)
|
||||
"""
|
||||
try:
|
||||
c = array([3., 2., 1.])
|
||||
x = linspace(0, 2, 5)
|
||||
y = polyval(c, x)
|
||||
_ = polyfit(x, y, 2, cov=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
if sys.platform == "darwin":
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
_mac_os_check()
|
||||
# Throw runtime error, if the test failed Check for warning and error_message
|
||||
error_message = ""
|
||||
if len(w) > 0:
|
||||
error_message = "{}: {}".format(w[-1].category.__name__, str(w[-1].message))
|
||||
msg = (
|
||||
"Polyfit sanity test emitted a warning, most likely due "
|
||||
"to using a buggy Accelerate backend."
|
||||
"\nIf you compiled yourself, more information is available at:"
|
||||
"\nhttps://numpy.org/doc/stable/user/building.html#accelerated-blas-lapack-libraries"
|
||||
"\nOtherwise report this to the vendor "
|
||||
"that provided NumPy.\n{}\n".format(error_message))
|
||||
raise RuntimeError(msg)
|
||||
del _mac_os_check
|
||||
|
||||
# We usually use madvise hugepages support, but on some old kernels it
|
||||
# is slow and thus better avoided.
|
||||
# Specifically kernel version 4.6 had a bug fix which probably fixed this:
|
||||
# https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
|
||||
import os
|
||||
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
|
||||
if sys.platform == "linux" and use_hugepage is None:
|
||||
# If there is an issue with parsing the kernel version,
|
||||
# set use_hugepages to 0. Usage of LooseVersion will handle
|
||||
# the kernel version parsing better, but avoided since it
|
||||
# will increase the import time. See: #16679 for related discussion.
|
||||
try:
|
||||
use_hugepage = 1
|
||||
kernel_version = os.uname().release.split(".")[:2]
|
||||
kernel_version = tuple(int(v) for v in kernel_version)
|
||||
if kernel_version < (4, 6):
|
||||
use_hugepage = 0
|
||||
except ValueError:
|
||||
use_hugepages = 0
|
||||
elif use_hugepage is None:
|
||||
# This is not Linux, so it should not matter, just enable anyway
|
||||
use_hugepage = 1
|
||||
else:
|
||||
use_hugepage = int(use_hugepage)
|
||||
|
||||
# Note that this will currently only make a difference on Linux
|
||||
core.multiarray._set_madvise_hugepage(use_hugepage)
|
||||
|
||||
# Give a warning if NumPy is reloaded or imported on a sub-interpreter
|
||||
# We do this from python, since the C-module may not be reloaded and
|
||||
# it is tidier organized.
|
||||
core.multiarray._multiarray_umath._reload_guard()
|
||||
|
||||
core._set_promotion_state(os.environ.get("NPY_PROMOTION_STATE", "legacy"))
|
||||
|
||||
# Tell PyInstaller where to find hook-numpy.py
|
||||
def _pyinstaller_hooks_dir():
|
||||
from pathlib import Path
|
||||
return [str(Path(__file__).with_name("_pyinstaller").resolve())]
|
||||
|
||||
# Remove symbols imported for internal use
|
||||
del os
|
||||
|
||||
|
||||
# get the version using versioneer
|
||||
from .version import __version__, git_revision as __git_version__
|
||||
|
||||
# Remove symbols imported for internal use
|
||||
del sys, warnings
|
||||
4416
plotter-app/venv/lib/python3.8/site-packages/numpy/__init__.pyi
Normal file
4416
plotter-app/venv/lib/python3.8/site-packages/numpy/__init__.pyi
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,10 @@
|
||||
""" Distributor init file
|
||||
|
||||
Distributors: you can add custom code here to support particular distributions
|
||||
of numpy.
|
||||
|
||||
For example, this is a good place to put any checks for hardware requirements.
|
||||
|
||||
The numpy standard source distribution will not put code in this file, so you
|
||||
can safely replace this file with your own version.
|
||||
"""
|
||||
125
plotter-app/venv/lib/python3.8/site-packages/numpy/_globals.py
Normal file
125
plotter-app/venv/lib/python3.8/site-packages/numpy/_globals.py
Normal file
@@ -0,0 +1,125 @@
|
||||
"""
|
||||
Module defining global singleton classes.
|
||||
|
||||
This module raises a RuntimeError if an attempt to reload it is made. In that
|
||||
way the identities of the classes defined here are fixed and will remain so
|
||||
even if numpy itself is reloaded. In particular, a function like the following
|
||||
will still work correctly after numpy is reloaded::
|
||||
|
||||
def foo(arg=np._NoValue):
|
||||
if arg is np._NoValue:
|
||||
...
|
||||
|
||||
That was not the case when the singleton classes were defined in the numpy
|
||||
``__init__.py`` file. See gh-7844 for a discussion of the reload problem that
|
||||
motivated this module.
|
||||
|
||||
"""
|
||||
import enum
|
||||
|
||||
__ALL__ = [
|
||||
'ModuleDeprecationWarning', 'VisibleDeprecationWarning',
|
||||
'_NoValue', '_CopyMode'
|
||||
]
|
||||
|
||||
|
||||
# Disallow reloading this module so as to preserve the identities of the
|
||||
# classes defined here.
|
||||
if '_is_loaded' in globals():
|
||||
raise RuntimeError('Reloading numpy._globals is not allowed')
|
||||
_is_loaded = True
|
||||
|
||||
|
||||
class ModuleDeprecationWarning(DeprecationWarning):
|
||||
"""Module deprecation warning.
|
||||
|
||||
The nose tester turns ordinary Deprecation warnings into test failures.
|
||||
That makes it hard to deprecate whole modules, because they get
|
||||
imported by default. So this is a special Deprecation warning that the
|
||||
nose tester will let pass without making tests fail.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
ModuleDeprecationWarning.__module__ = 'numpy'
|
||||
|
||||
|
||||
class VisibleDeprecationWarning(UserWarning):
|
||||
"""Visible deprecation warning.
|
||||
|
||||
By default, python will not show deprecation warnings, so this class
|
||||
can be used when a very visible warning is helpful, for example because
|
||||
the usage is most likely a user bug.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
VisibleDeprecationWarning.__module__ = 'numpy'
|
||||
|
||||
|
||||
class _NoValueType:
|
||||
"""Special keyword value.
|
||||
|
||||
The instance of this class may be used as the default value assigned to a
|
||||
keyword if no other obvious default (e.g., `None`) is suitable,
|
||||
|
||||
Common reasons for using this keyword are:
|
||||
|
||||
- A new keyword is added to a function, and that function forwards its
|
||||
inputs to another function or method which can be defined outside of
|
||||
NumPy. For example, ``np.std(x)`` calls ``x.std``, so when a ``keepdims``
|
||||
keyword was added that could only be forwarded if the user explicitly
|
||||
specified ``keepdims``; downstream array libraries may not have added
|
||||
the same keyword, so adding ``x.std(..., keepdims=keepdims)``
|
||||
unconditionally could have broken previously working code.
|
||||
- A keyword is being deprecated, and a deprecation warning must only be
|
||||
emitted when the keyword is used.
|
||||
|
||||
"""
|
||||
__instance = None
|
||||
def __new__(cls):
|
||||
# ensure that only one instance exists
|
||||
if not cls.__instance:
|
||||
cls.__instance = super().__new__(cls)
|
||||
return cls.__instance
|
||||
|
||||
def __repr__(self):
|
||||
return "<no value>"
|
||||
|
||||
|
||||
_NoValue = _NoValueType()
|
||||
|
||||
|
||||
class _CopyMode(enum.Enum):
|
||||
"""
|
||||
An enumeration for the copy modes supported
|
||||
by numpy.copy() and numpy.array(). The following three modes are supported,
|
||||
|
||||
- ALWAYS: This means that a deep copy of the input
|
||||
array will always be taken.
|
||||
- IF_NEEDED: This means that a deep copy of the input
|
||||
array will be taken only if necessary.
|
||||
- NEVER: This means that the deep copy will never be taken.
|
||||
If a copy cannot be avoided then a `ValueError` will be
|
||||
raised.
|
||||
|
||||
Note that the buffer-protocol could in theory do copies. NumPy currently
|
||||
assumes an object exporting the buffer protocol will never do this.
|
||||
"""
|
||||
|
||||
ALWAYS = True
|
||||
IF_NEEDED = False
|
||||
NEVER = 2
|
||||
|
||||
def __bool__(self):
|
||||
# For backwards compatibility
|
||||
if self == _CopyMode.ALWAYS:
|
||||
return True
|
||||
|
||||
if self == _CopyMode.IF_NEEDED:
|
||||
return False
|
||||
|
||||
raise ValueError(f"{self} is neither True nor False.")
|
||||
|
||||
|
||||
_CopyMode.__module__ = 'numpy'
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,40 @@
|
||||
"""This hook should collect all binary files and any hidden modules that numpy
|
||||
needs.
|
||||
|
||||
Our (some-what inadequate) docs for writing PyInstaller hooks are kept here:
|
||||
https://pyinstaller.readthedocs.io/en/stable/hooks.html
|
||||
|
||||
"""
|
||||
from PyInstaller.compat import is_conda, is_pure_conda
|
||||
from PyInstaller.utils.hooks import collect_dynamic_libs, is_module_satisfies
|
||||
|
||||
# Collect all DLLs inside numpy's installation folder, dump them into built
|
||||
# app's root.
|
||||
binaries = collect_dynamic_libs("numpy", ".")
|
||||
|
||||
# If using Conda without any non-conda virtual environment manager:
|
||||
if is_pure_conda:
|
||||
# Assume running the NumPy from Conda-forge and collect it's DLLs from the
|
||||
# communal Conda bin directory. DLLs from NumPy's dependencies must also be
|
||||
# collected to capture MKL, OpenBlas, OpenMP, etc.
|
||||
from PyInstaller.utils.hooks import conda_support
|
||||
datas = conda_support.collect_dynamic_libs("numpy", dependencies=True)
|
||||
|
||||
# Submodules PyInstaller cannot detect (probably because they are only imported
|
||||
# by extension modules, which PyInstaller cannot read).
|
||||
hiddenimports = ['numpy.core._dtype_ctypes']
|
||||
if is_conda:
|
||||
hiddenimports.append("six")
|
||||
|
||||
# Remove testing and building code and packages that are referenced throughout
|
||||
# NumPy but are not really dependencies.
|
||||
excludedimports = [
|
||||
"scipy",
|
||||
"pytest",
|
||||
"nose",
|
||||
"f2py",
|
||||
"setuptools",
|
||||
"numpy.f2py",
|
||||
"distutils",
|
||||
"numpy.distutils",
|
||||
]
|
||||
@@ -0,0 +1,32 @@
|
||||
"""A crude *bit of everything* smoke test to verify PyInstaller compatibility.
|
||||
|
||||
PyInstaller typically goes wrong by forgetting to package modules, extension
|
||||
modules or shared libraries. This script should aim to touch as many of those
|
||||
as possible in an attempt to trip a ModuleNotFoundError or a DLL load failure
|
||||
due to an uncollected resource. Missing resources are unlikely to lead to
|
||||
arithmetic errors so there's generally no need to verify any calculation's
|
||||
output - merely that it made it to the end OK. This script should not
|
||||
explicitly import any of numpy's submodules as that gives PyInstaller undue
|
||||
hints that those submodules exist and should be collected (accessing implicitly
|
||||
loaded submodules is OK).
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
a = np.arange(1., 10.).reshape((3, 3)) % 5
|
||||
np.linalg.det(a)
|
||||
a @ a
|
||||
a @ a.T
|
||||
np.linalg.inv(a)
|
||||
np.sin(np.exp(a))
|
||||
np.linalg.svd(a)
|
||||
np.linalg.eigh(a)
|
||||
|
||||
np.unique(np.random.randint(0, 10, 100))
|
||||
np.sort(np.random.uniform(0, 10, 100))
|
||||
|
||||
np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
|
||||
np.ma.masked_array(np.arange(10), np.random.rand(10) < .5).sum()
|
||||
np.polynomial.Legendre([7, 8, 9]).roots()
|
||||
|
||||
print("I made it!")
|
||||
@@ -0,0 +1,35 @@
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
# PyInstaller has been very unproactive about replacing 'imp' with 'importlib'.
|
||||
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
|
||||
# It also leaks io.BytesIO()s.
|
||||
@pytest.mark.filterwarnings('ignore::ResourceWarning')
|
||||
@pytest.mark.parametrize("mode", ["--onedir", "--onefile"])
|
||||
@pytest.mark.slow
|
||||
def test_pyinstaller(mode, tmp_path):
|
||||
"""Compile and run pyinstaller-smoke.py using PyInstaller."""
|
||||
|
||||
pyinstaller_cli = pytest.importorskip("PyInstaller.__main__").run
|
||||
|
||||
source = Path(__file__).with_name("pyinstaller-smoke.py").resolve()
|
||||
args = [
|
||||
# Place all generated files in ``tmp_path``.
|
||||
'--workpath', str(tmp_path / "build"),
|
||||
'--distpath', str(tmp_path / "dist"),
|
||||
'--specpath', str(tmp_path),
|
||||
mode,
|
||||
str(source),
|
||||
]
|
||||
pyinstaller_cli(args)
|
||||
|
||||
if mode == "--onefile":
|
||||
exe = tmp_path / "dist" / source.stem
|
||||
else:
|
||||
exe = tmp_path / "dist" / source.stem / source.stem
|
||||
|
||||
p = subprocess.run([str(exe)], check=True, stdout=subprocess.PIPE)
|
||||
assert p.stdout.strip() == b"I made it!"
|
||||
@@ -0,0 +1,206 @@
|
||||
"""
|
||||
Pytest test running.
|
||||
|
||||
This module implements the ``test()`` function for NumPy modules. The usual
|
||||
boiler plate for doing that is to put the following in the module
|
||||
``__init__.py`` file::
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
|
||||
Warnings filtering and other runtime settings should be dealt with in the
|
||||
``pytest.ini`` file in the numpy repo root. The behavior of the test depends on
|
||||
whether or not that file is found as follows:
|
||||
|
||||
* ``pytest.ini`` is present (develop mode)
|
||||
All warnings except those explicitly filtered out are raised as error.
|
||||
* ``pytest.ini`` is absent (release mode)
|
||||
DeprecationWarnings and PendingDeprecationWarnings are ignored, other
|
||||
warnings are passed through.
|
||||
|
||||
In practice, tests run from the numpy repo are run in develop mode. That
|
||||
includes the standard ``python runtests.py`` invocation.
|
||||
|
||||
This module is imported by every numpy subpackage, so lies at the top level to
|
||||
simplify circular import issues. For the same reason, it contains no numpy
|
||||
imports at module scope, instead importing numpy within function calls.
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
|
||||
__all__ = ['PytestTester']
|
||||
|
||||
|
||||
def _show_numpy_info():
|
||||
import numpy as np
|
||||
|
||||
print("NumPy version %s" % np.__version__)
|
||||
relaxed_strides = np.ones((10, 1), order="C").flags.f_contiguous
|
||||
print("NumPy relaxed strides checking option:", relaxed_strides)
|
||||
info = np.lib.utils._opt_info()
|
||||
print("NumPy CPU features: ", (info if info else 'nothing enabled'))
|
||||
|
||||
|
||||
class PytestTester:
|
||||
"""
|
||||
Pytest test runner.
|
||||
|
||||
A test function is typically added to a package's __init__.py like so::
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__).test
|
||||
del PytestTester
|
||||
|
||||
Calling this test function finds and runs all tests associated with the
|
||||
module and all its sub-modules.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
module_name : str
|
||||
Full path to the package to test.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
module_name : module name
|
||||
The name of the module to test.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Unlike the previous ``nose``-based implementation, this class is not
|
||||
publicly exposed as it performs some ``numpy``-specific warning
|
||||
suppression.
|
||||
|
||||
"""
|
||||
def __init__(self, module_name):
|
||||
self.module_name = module_name
|
||||
|
||||
def __call__(self, label='fast', verbose=1, extra_argv=None,
|
||||
doctests=False, coverage=False, durations=-1, tests=None):
|
||||
"""
|
||||
Run tests for module using pytest.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : {'fast', 'full'}, optional
|
||||
Identifies the tests to run. When set to 'fast', tests decorated
|
||||
with `pytest.mark.slow` are skipped, when 'full', the slow marker
|
||||
is ignored.
|
||||
verbose : int, optional
|
||||
Verbosity value for test outputs, in the range 1-3. Default is 1.
|
||||
extra_argv : list, optional
|
||||
List with any extra arguments to pass to pytests.
|
||||
doctests : bool, optional
|
||||
.. note:: Not supported
|
||||
coverage : bool, optional
|
||||
If True, report coverage of NumPy code. Default is False.
|
||||
Requires installation of (pip) pytest-cov.
|
||||
durations : int, optional
|
||||
If < 0, do nothing, If 0, report time of all tests, if > 0,
|
||||
report the time of the slowest `timer` tests. Default is -1.
|
||||
tests : test or list of tests
|
||||
Tests to be executed with pytest '--pyargs'
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : bool
|
||||
Return True on success, false otherwise.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Each NumPy module exposes `test` in its namespace to run all tests for
|
||||
it. For example, to run all tests for numpy.lib:
|
||||
|
||||
>>> np.lib.test() #doctest: +SKIP
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> result = np.lib.test() #doctest: +SKIP
|
||||
...
|
||||
1023 passed, 2 skipped, 6 deselected, 1 xfailed in 10.39 seconds
|
||||
>>> result
|
||||
True
|
||||
|
||||
"""
|
||||
import pytest
|
||||
import warnings
|
||||
|
||||
module = sys.modules[self.module_name]
|
||||
module_path = os.path.abspath(module.__path__[0])
|
||||
|
||||
# setup the pytest arguments
|
||||
pytest_args = ["-l"]
|
||||
|
||||
# offset verbosity. The "-q" cancels a "-v".
|
||||
pytest_args += ["-q"]
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("always")
|
||||
# Filter out distutils cpu warnings (could be localized to
|
||||
# distutils tests). ASV has problems with top level import,
|
||||
# so fetch module for suppression here.
|
||||
from numpy.distutils import cpuinfo
|
||||
|
||||
with warnings.catch_warnings(record=True):
|
||||
# Ignore the warning from importing the array_api submodule. This
|
||||
# warning is done on import, so it would break pytest collection,
|
||||
# but importing it early here prevents the warning from being
|
||||
# issued when it imported again.
|
||||
import numpy.array_api
|
||||
|
||||
# Filter out annoying import messages. Want these in both develop and
|
||||
# release mode.
|
||||
pytest_args += [
|
||||
"-W ignore:Not importing directory",
|
||||
"-W ignore:numpy.dtype size changed",
|
||||
"-W ignore:numpy.ufunc size changed",
|
||||
"-W ignore::UserWarning:cpuinfo",
|
||||
]
|
||||
|
||||
# When testing matrices, ignore their PendingDeprecationWarnings
|
||||
pytest_args += [
|
||||
"-W ignore:the matrix subclass is not",
|
||||
"-W ignore:Importing from numpy.matlib is",
|
||||
]
|
||||
|
||||
if doctests:
|
||||
pytest_args += ["--doctest-modules"]
|
||||
|
||||
if extra_argv:
|
||||
pytest_args += list(extra_argv)
|
||||
|
||||
if verbose > 1:
|
||||
pytest_args += ["-" + "v"*(verbose - 1)]
|
||||
|
||||
if coverage:
|
||||
pytest_args += ["--cov=" + module_path]
|
||||
|
||||
if label == "fast":
|
||||
# not importing at the top level to avoid circular import of module
|
||||
from numpy.testing import IS_PYPY
|
||||
if IS_PYPY:
|
||||
pytest_args += ["-m", "not slow and not slow_pypy"]
|
||||
else:
|
||||
pytest_args += ["-m", "not slow"]
|
||||
|
||||
elif label != "full":
|
||||
pytest_args += ["-m", label]
|
||||
|
||||
if durations >= 0:
|
||||
pytest_args += ["--durations=%s" % durations]
|
||||
|
||||
if tests is None:
|
||||
tests = [self.module_name]
|
||||
|
||||
pytest_args += ["--pyargs"] + list(tests)
|
||||
|
||||
# run tests.
|
||||
_show_numpy_info()
|
||||
|
||||
try:
|
||||
code = pytest.main(pytest_args)
|
||||
except SystemExit as exc:
|
||||
code = exc.code
|
||||
|
||||
return code == 0
|
||||
@@ -0,0 +1,18 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import Literal as L
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
class PytestTester:
|
||||
module_name: str
|
||||
def __init__(self, module_name: str) -> None: ...
|
||||
def __call__(
|
||||
self,
|
||||
label: L["fast", "full"] = ...,
|
||||
verbose: int = ...,
|
||||
extra_argv: None | Iterable[str] = ...,
|
||||
doctests: L[False] = ...,
|
||||
coverage: bool = ...,
|
||||
durations: int = ...,
|
||||
tests: None | Iterable[str] = ...,
|
||||
) -> bool: ...
|
||||
@@ -0,0 +1,225 @@
|
||||
"""Private counterpart of ``numpy.typing``."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from numpy import ufunc
|
||||
from numpy.core.overrides import set_module
|
||||
from typing import TYPE_CHECKING, final
|
||||
|
||||
|
||||
@final # Disallow the creation of arbitrary `NBitBase` subclasses
|
||||
@set_module("numpy.typing")
|
||||
class NBitBase:
|
||||
"""
|
||||
A type representing `numpy.number` precision during static type checking.
|
||||
|
||||
Used exclusively for the purpose static type checking, `NBitBase`
|
||||
represents the base of a hierarchical set of subclasses.
|
||||
Each subsequent subclass is herein used for representing a lower level
|
||||
of precision, *e.g.* ``64Bit > 32Bit > 16Bit``.
|
||||
|
||||
.. versionadded:: 1.20
|
||||
|
||||
Examples
|
||||
--------
|
||||
Below is a typical usage example: `NBitBase` is herein used for annotating
|
||||
a function that takes a float and integer of arbitrary precision
|
||||
as arguments and returns a new float of whichever precision is largest
|
||||
(*e.g.* ``np.float16 + np.int64 -> np.float64``).
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> from __future__ import annotations
|
||||
>>> from typing import TypeVar, TYPE_CHECKING
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> T1 = TypeVar("T1", bound=npt.NBitBase)
|
||||
>>> T2 = TypeVar("T2", bound=npt.NBitBase)
|
||||
|
||||
>>> def add(a: np.floating[T1], b: np.integer[T2]) -> np.floating[T1 | T2]:
|
||||
... return a + b
|
||||
|
||||
>>> a = np.float16()
|
||||
>>> b = np.int64()
|
||||
>>> out = add(a, b)
|
||||
|
||||
>>> if TYPE_CHECKING:
|
||||
... reveal_locals()
|
||||
... # note: Revealed local types are:
|
||||
... # note: a: numpy.floating[numpy.typing._16Bit*]
|
||||
... # note: b: numpy.signedinteger[numpy.typing._64Bit*]
|
||||
... # note: out: numpy.floating[numpy.typing._64Bit*]
|
||||
|
||||
"""
|
||||
|
||||
def __init_subclass__(cls) -> None:
|
||||
allowed_names = {
|
||||
"NBitBase", "_256Bit", "_128Bit", "_96Bit", "_80Bit",
|
||||
"_64Bit", "_32Bit", "_16Bit", "_8Bit",
|
||||
}
|
||||
if cls.__name__ not in allowed_names:
|
||||
raise TypeError('cannot inherit from final class "NBitBase"')
|
||||
super().__init_subclass__()
|
||||
|
||||
|
||||
# Silence errors about subclassing a `@final`-decorated class
|
||||
class _256Bit(NBitBase): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _128Bit(_256Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _96Bit(_128Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _80Bit(_96Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _64Bit(_80Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _32Bit(_64Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _16Bit(_32Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
class _8Bit(_16Bit): # type: ignore[misc]
|
||||
pass
|
||||
|
||||
|
||||
from ._nested_sequence import (
|
||||
_NestedSequence as _NestedSequence,
|
||||
)
|
||||
from ._nbit import (
|
||||
_NBitByte as _NBitByte,
|
||||
_NBitShort as _NBitShort,
|
||||
_NBitIntC as _NBitIntC,
|
||||
_NBitIntP as _NBitIntP,
|
||||
_NBitInt as _NBitInt,
|
||||
_NBitLongLong as _NBitLongLong,
|
||||
_NBitHalf as _NBitHalf,
|
||||
_NBitSingle as _NBitSingle,
|
||||
_NBitDouble as _NBitDouble,
|
||||
_NBitLongDouble as _NBitLongDouble,
|
||||
)
|
||||
from ._char_codes import (
|
||||
_BoolCodes as _BoolCodes,
|
||||
_UInt8Codes as _UInt8Codes,
|
||||
_UInt16Codes as _UInt16Codes,
|
||||
_UInt32Codes as _UInt32Codes,
|
||||
_UInt64Codes as _UInt64Codes,
|
||||
_Int8Codes as _Int8Codes,
|
||||
_Int16Codes as _Int16Codes,
|
||||
_Int32Codes as _Int32Codes,
|
||||
_Int64Codes as _Int64Codes,
|
||||
_Float16Codes as _Float16Codes,
|
||||
_Float32Codes as _Float32Codes,
|
||||
_Float64Codes as _Float64Codes,
|
||||
_Complex64Codes as _Complex64Codes,
|
||||
_Complex128Codes as _Complex128Codes,
|
||||
_ByteCodes as _ByteCodes,
|
||||
_ShortCodes as _ShortCodes,
|
||||
_IntCCodes as _IntCCodes,
|
||||
_IntPCodes as _IntPCodes,
|
||||
_IntCodes as _IntCodes,
|
||||
_LongLongCodes as _LongLongCodes,
|
||||
_UByteCodes as _UByteCodes,
|
||||
_UShortCodes as _UShortCodes,
|
||||
_UIntCCodes as _UIntCCodes,
|
||||
_UIntPCodes as _UIntPCodes,
|
||||
_UIntCodes as _UIntCodes,
|
||||
_ULongLongCodes as _ULongLongCodes,
|
||||
_HalfCodes as _HalfCodes,
|
||||
_SingleCodes as _SingleCodes,
|
||||
_DoubleCodes as _DoubleCodes,
|
||||
_LongDoubleCodes as _LongDoubleCodes,
|
||||
_CSingleCodes as _CSingleCodes,
|
||||
_CDoubleCodes as _CDoubleCodes,
|
||||
_CLongDoubleCodes as _CLongDoubleCodes,
|
||||
_DT64Codes as _DT64Codes,
|
||||
_TD64Codes as _TD64Codes,
|
||||
_StrCodes as _StrCodes,
|
||||
_BytesCodes as _BytesCodes,
|
||||
_VoidCodes as _VoidCodes,
|
||||
_ObjectCodes as _ObjectCodes,
|
||||
)
|
||||
from ._scalars import (
|
||||
_CharLike_co as _CharLike_co,
|
||||
_BoolLike_co as _BoolLike_co,
|
||||
_UIntLike_co as _UIntLike_co,
|
||||
_IntLike_co as _IntLike_co,
|
||||
_FloatLike_co as _FloatLike_co,
|
||||
_ComplexLike_co as _ComplexLike_co,
|
||||
_TD64Like_co as _TD64Like_co,
|
||||
_NumberLike_co as _NumberLike_co,
|
||||
_ScalarLike_co as _ScalarLike_co,
|
||||
_VoidLike_co as _VoidLike_co,
|
||||
)
|
||||
from ._shape import (
|
||||
_Shape as _Shape,
|
||||
_ShapeLike as _ShapeLike,
|
||||
)
|
||||
from ._dtype_like import (
|
||||
DTypeLike as DTypeLike,
|
||||
_DTypeLike as _DTypeLike,
|
||||
_SupportsDType as _SupportsDType,
|
||||
_VoidDTypeLike as _VoidDTypeLike,
|
||||
_DTypeLikeBool as _DTypeLikeBool,
|
||||
_DTypeLikeUInt as _DTypeLikeUInt,
|
||||
_DTypeLikeInt as _DTypeLikeInt,
|
||||
_DTypeLikeFloat as _DTypeLikeFloat,
|
||||
_DTypeLikeComplex as _DTypeLikeComplex,
|
||||
_DTypeLikeTD64 as _DTypeLikeTD64,
|
||||
_DTypeLikeDT64 as _DTypeLikeDT64,
|
||||
_DTypeLikeObject as _DTypeLikeObject,
|
||||
_DTypeLikeVoid as _DTypeLikeVoid,
|
||||
_DTypeLikeStr as _DTypeLikeStr,
|
||||
_DTypeLikeBytes as _DTypeLikeBytes,
|
||||
_DTypeLikeComplex_co as _DTypeLikeComplex_co,
|
||||
)
|
||||
from ._array_like import (
|
||||
ArrayLike as ArrayLike,
|
||||
_ArrayLike as _ArrayLike,
|
||||
_FiniteNestedSequence as _FiniteNestedSequence,
|
||||
_SupportsArray as _SupportsArray,
|
||||
_SupportsArrayFunc as _SupportsArrayFunc,
|
||||
_ArrayLikeInt as _ArrayLikeInt,
|
||||
_ArrayLikeBool_co as _ArrayLikeBool_co,
|
||||
_ArrayLikeUInt_co as _ArrayLikeUInt_co,
|
||||
_ArrayLikeInt_co as _ArrayLikeInt_co,
|
||||
_ArrayLikeFloat_co as _ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co as _ArrayLikeComplex_co,
|
||||
_ArrayLikeNumber_co as _ArrayLikeNumber_co,
|
||||
_ArrayLikeTD64_co as _ArrayLikeTD64_co,
|
||||
_ArrayLikeDT64_co as _ArrayLikeDT64_co,
|
||||
_ArrayLikeObject_co as _ArrayLikeObject_co,
|
||||
_ArrayLikeVoid_co as _ArrayLikeVoid_co,
|
||||
_ArrayLikeStr_co as _ArrayLikeStr_co,
|
||||
_ArrayLikeBytes_co as _ArrayLikeBytes_co,
|
||||
_ArrayLikeUnknown as _ArrayLikeUnknown,
|
||||
_UnknownType as _UnknownType,
|
||||
)
|
||||
from ._generic_alias import (
|
||||
NDArray as NDArray,
|
||||
_DType as _DType,
|
||||
_GenericAlias as _GenericAlias,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._ufunc import (
|
||||
_UFunc_Nin1_Nout1 as _UFunc_Nin1_Nout1,
|
||||
_UFunc_Nin2_Nout1 as _UFunc_Nin2_Nout1,
|
||||
_UFunc_Nin1_Nout2 as _UFunc_Nin1_Nout2,
|
||||
_UFunc_Nin2_Nout2 as _UFunc_Nin2_Nout2,
|
||||
_GUFunc_Nin2_Nout1 as _GUFunc_Nin2_Nout1,
|
||||
)
|
||||
else:
|
||||
# Declare the (type-check-only) ufunc subclasses as ufunc aliases during
|
||||
# runtime; this helps autocompletion tools such as Jedi (numpy/numpy#19834)
|
||||
_UFunc_Nin1_Nout1 = ufunc
|
||||
_UFunc_Nin2_Nout1 = ufunc
|
||||
_UFunc_Nin1_Nout2 = ufunc
|
||||
_UFunc_Nin2_Nout2 = ufunc
|
||||
_GUFunc_Nin2_Nout1 = ufunc
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,152 @@
|
||||
"""A module for creating docstrings for sphinx ``data`` domains."""
|
||||
|
||||
import re
|
||||
import textwrap
|
||||
|
||||
from ._generic_alias import NDArray
|
||||
|
||||
_docstrings_list = []
|
||||
|
||||
|
||||
def add_newdoc(name: str, value: str, doc: str) -> None:
|
||||
"""Append ``_docstrings_list`` with a docstring for `name`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The name of the object.
|
||||
value : str
|
||||
A string-representation of the object.
|
||||
doc : str
|
||||
The docstring of the object.
|
||||
|
||||
"""
|
||||
_docstrings_list.append((name, value, doc))
|
||||
|
||||
|
||||
def _parse_docstrings() -> str:
|
||||
"""Convert all docstrings in ``_docstrings_list`` into a single
|
||||
sphinx-legible text block.
|
||||
|
||||
"""
|
||||
type_list_ret = []
|
||||
for name, value, doc in _docstrings_list:
|
||||
s = textwrap.dedent(doc).replace("\n", "\n ")
|
||||
|
||||
# Replace sections by rubrics
|
||||
lines = s.split("\n")
|
||||
new_lines = []
|
||||
indent = ""
|
||||
for line in lines:
|
||||
m = re.match(r'^(\s+)[-=]+\s*$', line)
|
||||
if m and new_lines:
|
||||
prev = textwrap.dedent(new_lines.pop())
|
||||
if prev == "Examples":
|
||||
indent = ""
|
||||
new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
|
||||
else:
|
||||
indent = 4 * " "
|
||||
new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
|
||||
new_lines.append("")
|
||||
else:
|
||||
new_lines.append(f"{indent}{line}")
|
||||
|
||||
s = "\n".join(new_lines)
|
||||
s_block = f""".. data:: {name}\n :value: {value}\n {s}"""
|
||||
type_list_ret.append(s_block)
|
||||
return "\n".join(type_list_ret)
|
||||
|
||||
|
||||
add_newdoc('ArrayLike', 'typing.Union[...]',
|
||||
"""
|
||||
A `~typing.Union` representing objects that can be coerced
|
||||
into an `~numpy.ndarray`.
|
||||
|
||||
Among others this includes the likes of:
|
||||
|
||||
* Scalars.
|
||||
* (Nested) sequences.
|
||||
* Objects implementing the `~class.__array__` protocol.
|
||||
|
||||
.. versionadded:: 1.20
|
||||
|
||||
See Also
|
||||
--------
|
||||
:term:`array_like`:
|
||||
Any scalar or sequence that can be interpreted as an ndarray.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
|
||||
... return np.array(a)
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('DTypeLike', 'typing.Union[...]',
|
||||
"""
|
||||
A `~typing.Union` representing objects that can be coerced
|
||||
into a `~numpy.dtype`.
|
||||
|
||||
Among others this includes the likes of:
|
||||
|
||||
* :class:`type` objects.
|
||||
* Character codes or the names of :class:`type` objects.
|
||||
* Objects with the ``.dtype`` attribute.
|
||||
|
||||
.. versionadded:: 1.20
|
||||
|
||||
See Also
|
||||
--------
|
||||
:ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
|
||||
A comprehensive overview of all objects that can be coerced
|
||||
into data types.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
|
||||
... return np.dtype(d)
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('NDArray', repr(NDArray),
|
||||
"""
|
||||
A :term:`generic <generic type>` version of
|
||||
`np.ndarray[Any, np.dtype[+ScalarType]] <numpy.ndarray>`.
|
||||
|
||||
Can be used during runtime for typing arrays with a given dtype
|
||||
and unspecified shape.
|
||||
|
||||
.. versionadded:: 1.21
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> import numpy.typing as npt
|
||||
|
||||
>>> print(npt.NDArray)
|
||||
numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]
|
||||
|
||||
>>> print(npt.NDArray[np.float64])
|
||||
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
|
||||
|
||||
>>> NDArrayInt = npt.NDArray[np.int_]
|
||||
>>> a: NDArrayInt = np.arange(10)
|
||||
|
||||
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
|
||||
... return np.array(a)
|
||||
|
||||
""")
|
||||
|
||||
_docstrings = _parse_docstrings()
|
||||
@@ -0,0 +1,165 @@
|
||||
from __future__ import annotations
|
||||
|
||||
# NOTE: Import `Sequence` from `typing` as we it is needed for a type-alias,
|
||||
# not an annotation
|
||||
import sys
|
||||
from collections.abc import Collection, Callable
|
||||
from typing import Any, Sequence, Protocol, Union, TypeVar, runtime_checkable
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
generic,
|
||||
bool_,
|
||||
unsignedinteger,
|
||||
integer,
|
||||
floating,
|
||||
complexfloating,
|
||||
number,
|
||||
timedelta64,
|
||||
datetime64,
|
||||
object_,
|
||||
void,
|
||||
str_,
|
||||
bytes_,
|
||||
)
|
||||
from ._nested_sequence import _NestedSequence
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_ScalarType = TypeVar("_ScalarType", bound=generic)
|
||||
_DType = TypeVar("_DType", bound="dtype[Any]")
|
||||
_DType_co = TypeVar("_DType_co", covariant=True, bound="dtype[Any]")
|
||||
|
||||
# The `_SupportsArray` protocol only cares about the default dtype
|
||||
# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned
|
||||
# array.
|
||||
# Concrete implementations of the protocol are responsible for adding
|
||||
# any and all remaining overloads
|
||||
@runtime_checkable
|
||||
class _SupportsArray(Protocol[_DType_co]):
|
||||
def __array__(self) -> ndarray[Any, _DType_co]: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class _SupportsArrayFunc(Protocol):
|
||||
"""A protocol class representing `~class.__array_function__`."""
|
||||
def __array_function__(
|
||||
self,
|
||||
func: Callable[..., Any],
|
||||
types: Collection[type[Any]],
|
||||
args: tuple[Any, ...],
|
||||
kwargs: dict[str, Any],
|
||||
) -> object: ...
|
||||
|
||||
|
||||
# TODO: Wait until mypy supports recursive objects in combination with typevars
|
||||
_FiniteNestedSequence = Union[
|
||||
_T,
|
||||
Sequence[_T],
|
||||
Sequence[Sequence[_T]],
|
||||
Sequence[Sequence[Sequence[_T]]],
|
||||
Sequence[Sequence[Sequence[Sequence[_T]]]],
|
||||
]
|
||||
|
||||
# A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic`
|
||||
_ArrayLike = Union[
|
||||
_SupportsArray["dtype[_ScalarType]"],
|
||||
_NestedSequence[_SupportsArray["dtype[_ScalarType]"]],
|
||||
]
|
||||
|
||||
# A union representing array-like objects; consists of two typevars:
|
||||
# One representing types that can be parametrized w.r.t. `np.dtype`
|
||||
# and another one for the rest
|
||||
_DualArrayLike = Union[
|
||||
_SupportsArray[_DType],
|
||||
_NestedSequence[_SupportsArray[_DType]],
|
||||
_T,
|
||||
_NestedSequence[_T],
|
||||
]
|
||||
|
||||
# TODO: support buffer protocols once
|
||||
#
|
||||
# https://bugs.python.org/issue27501
|
||||
#
|
||||
# is resolved. See also the mypy issue:
|
||||
#
|
||||
# https://github.com/python/typing/issues/593
|
||||
if sys.version_info[:2] < (3, 9):
|
||||
ArrayLike = _DualArrayLike[
|
||||
dtype,
|
||||
Union[bool, int, float, complex, str, bytes],
|
||||
]
|
||||
else:
|
||||
ArrayLike = _DualArrayLike[
|
||||
dtype[Any],
|
||||
Union[bool, int, float, complex, str, bytes],
|
||||
]
|
||||
|
||||
# `ArrayLike<X>_co`: array-like objects that can be coerced into `X`
|
||||
# given the casting rules `same_kind`
|
||||
_ArrayLikeBool_co = _DualArrayLike[
|
||||
"dtype[bool_]",
|
||||
bool,
|
||||
]
|
||||
_ArrayLikeUInt_co = _DualArrayLike[
|
||||
"dtype[Union[bool_, unsignedinteger[Any]]]",
|
||||
bool,
|
||||
]
|
||||
_ArrayLikeInt_co = _DualArrayLike[
|
||||
"dtype[Union[bool_, integer[Any]]]",
|
||||
Union[bool, int],
|
||||
]
|
||||
_ArrayLikeFloat_co = _DualArrayLike[
|
||||
"dtype[Union[bool_, integer[Any], floating[Any]]]",
|
||||
Union[bool, int, float],
|
||||
]
|
||||
_ArrayLikeComplex_co = _DualArrayLike[
|
||||
"dtype[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]]",
|
||||
Union[bool, int, float, complex],
|
||||
]
|
||||
_ArrayLikeNumber_co = _DualArrayLike[
|
||||
"dtype[Union[bool_, number[Any]]]",
|
||||
Union[bool, int, float, complex],
|
||||
]
|
||||
_ArrayLikeTD64_co = _DualArrayLike[
|
||||
"dtype[Union[bool_, integer[Any], timedelta64]]",
|
||||
Union[bool, int],
|
||||
]
|
||||
_ArrayLikeDT64_co = Union[
|
||||
_SupportsArray["dtype[datetime64]"],
|
||||
_NestedSequence[_SupportsArray["dtype[datetime64]"]],
|
||||
]
|
||||
_ArrayLikeObject_co = Union[
|
||||
_SupportsArray["dtype[object_]"],
|
||||
_NestedSequence[_SupportsArray["dtype[object_]"]],
|
||||
]
|
||||
|
||||
_ArrayLikeVoid_co = Union[
|
||||
_SupportsArray["dtype[void]"],
|
||||
_NestedSequence[_SupportsArray["dtype[void]"]],
|
||||
]
|
||||
_ArrayLikeStr_co = _DualArrayLike[
|
||||
"dtype[str_]",
|
||||
str,
|
||||
]
|
||||
_ArrayLikeBytes_co = _DualArrayLike[
|
||||
"dtype[bytes_]",
|
||||
bytes,
|
||||
]
|
||||
|
||||
_ArrayLikeInt = _DualArrayLike[
|
||||
"dtype[integer[Any]]",
|
||||
int,
|
||||
]
|
||||
|
||||
# Extra ArrayLike type so that pyright can deal with NDArray[Any]
|
||||
# Used as the first overload, should only match NDArray[Any],
|
||||
# not any actual types.
|
||||
# https://github.com/numpy/numpy/pull/22193
|
||||
class _UnknownType:
|
||||
...
|
||||
|
||||
|
||||
_ArrayLikeUnknown = _DualArrayLike[
|
||||
"dtype[_UnknownType]",
|
||||
_UnknownType,
|
||||
]
|
||||
@@ -0,0 +1,338 @@
|
||||
"""
|
||||
A module with various ``typing.Protocol`` subclasses that implement
|
||||
the ``__call__`` magic method.
|
||||
|
||||
See the `Mypy documentation`_ on protocols for more details.
|
||||
|
||||
.. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TypeVar,
|
||||
overload,
|
||||
Any,
|
||||
NoReturn,
|
||||
Protocol,
|
||||
)
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
generic,
|
||||
bool_,
|
||||
timedelta64,
|
||||
number,
|
||||
integer,
|
||||
unsignedinteger,
|
||||
signedinteger,
|
||||
int8,
|
||||
int_,
|
||||
floating,
|
||||
float64,
|
||||
complexfloating,
|
||||
complex128,
|
||||
)
|
||||
from ._nbit import _NBitInt, _NBitDouble
|
||||
from ._scalars import (
|
||||
_BoolLike_co,
|
||||
_IntLike_co,
|
||||
_FloatLike_co,
|
||||
_NumberLike_co,
|
||||
)
|
||||
from . import NBitBase
|
||||
from ._generic_alias import NDArray
|
||||
from ._nested_sequence import _NestedSequence
|
||||
|
||||
_T1 = TypeVar("_T1")
|
||||
_T2 = TypeVar("_T2")
|
||||
_T1_contra = TypeVar("_T1_contra", contravariant=True)
|
||||
_T2_contra = TypeVar("_T2_contra", contravariant=True)
|
||||
_2Tuple = tuple[_T1, _T1]
|
||||
|
||||
_NBit1 = TypeVar("_NBit1", bound=NBitBase)
|
||||
_NBit2 = TypeVar("_NBit2", bound=NBitBase)
|
||||
|
||||
_IntType = TypeVar("_IntType", bound=integer)
|
||||
_FloatType = TypeVar("_FloatType", bound=floating)
|
||||
_NumberType = TypeVar("_NumberType", bound=number)
|
||||
_NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number)
|
||||
_GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic)
|
||||
|
||||
class _BoolOp(Protocol[_GenericType_co]):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: complex, /) -> complex128: ...
|
||||
@overload
|
||||
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
||||
|
||||
class _BoolBitOp(Protocol[_GenericType_co]):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: _IntType, /) -> _IntType: ...
|
||||
|
||||
class _BoolSub(Protocol):
|
||||
# Note that `other: bool_` is absent here
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> NoReturn: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: complex, /) -> complex128: ...
|
||||
@overload
|
||||
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
||||
|
||||
class _BoolTrueDiv(Protocol):
|
||||
@overload
|
||||
def __call__(self, other: float | _IntLike_co, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: complex, /) -> complex128: ...
|
||||
@overload
|
||||
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
||||
|
||||
class _BoolMod(Protocol):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> int8: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> int_: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> float64: ...
|
||||
@overload
|
||||
def __call__(self, other: _IntType, /) -> _IntType: ...
|
||||
@overload
|
||||
def __call__(self, other: _FloatType, /) -> _FloatType: ...
|
||||
|
||||
class _BoolDivMod(Protocol):
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> _2Tuple[int8]: ...
|
||||
@overload # platform dependent
|
||||
def __call__(self, other: int, /) -> _2Tuple[int_]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(self, other: _IntType, /) -> _2Tuple[_IntType]: ...
|
||||
@overload
|
||||
def __call__(self, other: _FloatType, /) -> _2Tuple[_FloatType]: ...
|
||||
|
||||
class _TD64Div(Protocol[_NumberType_co]):
|
||||
@overload
|
||||
def __call__(self, other: timedelta64, /) -> _NumberType_co: ...
|
||||
@overload
|
||||
def __call__(self, other: _BoolLike_co, /) -> NoReturn: ...
|
||||
@overload
|
||||
def __call__(self, other: _FloatLike_co, /) -> timedelta64: ...
|
||||
|
||||
class _IntTrueDiv(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(self, other: integer[_NBit2], /) -> floating[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntOp(Protocol[_NBit1]):
|
||||
# NOTE: `uint64 + signedinteger -> float64`
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: int | signedinteger[Any], /
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntBitOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[Any]: ...
|
||||
@overload
|
||||
def __call__(self, other: signedinteger[Any], /) -> signedinteger[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: int | signedinteger[Any], /
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _UnsignedIntDivMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: int | signedinteger[Any], /
|
||||
) -> _2Tuple[Any]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: unsignedinteger[_NBit2], /
|
||||
) -> _2Tuple[unsignedinteger[_NBit1 | _NBit2]]: ...
|
||||
|
||||
class _SignedIntOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> signedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _SignedIntBitOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> signedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _SignedIntMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> signedinteger[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _SignedIntDivMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> _2Tuple[signedinteger[_NBit1 | _NBitInt]]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: signedinteger[_NBit2], /,
|
||||
) -> _2Tuple[signedinteger[_NBit1 | _NBit2]]: ...
|
||||
|
||||
class _FloatOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: integer[_NBit2] | floating[_NBit2], /
|
||||
) -> floating[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _FloatMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: integer[_NBit2] | floating[_NBit2], /
|
||||
) -> floating[_NBit1 | _NBit2]: ...
|
||||
|
||||
class _FloatDivMod(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> _2Tuple[floating[_NBit1]]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> _2Tuple[floating[_NBit1 | _NBitInt]]: ...
|
||||
@overload
|
||||
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: integer[_NBit2] | floating[_NBit2], /
|
||||
) -> _2Tuple[floating[_NBit1 | _NBit2]]: ...
|
||||
|
||||
class _ComplexOp(Protocol[_NBit1]):
|
||||
@overload
|
||||
def __call__(self, other: bool, /) -> complexfloating[_NBit1, _NBit1]: ...
|
||||
@overload
|
||||
def __call__(self, other: int, /) -> complexfloating[_NBit1 | _NBitInt, _NBit1 | _NBitInt]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self, other: complex, /,
|
||||
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
other: (
|
||||
integer[_NBit2]
|
||||
| floating[_NBit2]
|
||||
| complexfloating[_NBit2, _NBit2]
|
||||
), /,
|
||||
) -> complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]: ...
|
||||
|
||||
class _NumberOp(Protocol):
|
||||
def __call__(self, other: _NumberLike_co, /) -> Any: ...
|
||||
|
||||
class _SupportsLT(Protocol):
|
||||
def __lt__(self, other: Any, /) -> object: ...
|
||||
|
||||
class _SupportsGT(Protocol):
|
||||
def __gt__(self, other: Any, /) -> object: ...
|
||||
|
||||
class _ComparisonOp(Protocol[_T1_contra, _T2_contra]):
|
||||
@overload
|
||||
def __call__(self, other: _T1_contra, /) -> bool_: ...
|
||||
@overload
|
||||
def __call__(self, other: _T2_contra, /) -> NDArray[bool_]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
other: _SupportsLT | _SupportsGT | _NestedSequence[_SupportsLT | _SupportsGT],
|
||||
/,
|
||||
) -> Any: ...
|
||||
@@ -0,0 +1,111 @@
|
||||
from typing import Literal
|
||||
|
||||
_BoolCodes = Literal["?", "=?", "<?", ">?", "bool", "bool_", "bool8"]
|
||||
|
||||
_UInt8Codes = Literal["uint8", "u1", "=u1", "<u1", ">u1"]
|
||||
_UInt16Codes = Literal["uint16", "u2", "=u2", "<u2", ">u2"]
|
||||
_UInt32Codes = Literal["uint32", "u4", "=u4", "<u4", ">u4"]
|
||||
_UInt64Codes = Literal["uint64", "u8", "=u8", "<u8", ">u8"]
|
||||
|
||||
_Int8Codes = Literal["int8", "i1", "=i1", "<i1", ">i1"]
|
||||
_Int16Codes = Literal["int16", "i2", "=i2", "<i2", ">i2"]
|
||||
_Int32Codes = Literal["int32", "i4", "=i4", "<i4", ">i4"]
|
||||
_Int64Codes = Literal["int64", "i8", "=i8", "<i8", ">i8"]
|
||||
|
||||
_Float16Codes = Literal["float16", "f2", "=f2", "<f2", ">f2"]
|
||||
_Float32Codes = Literal["float32", "f4", "=f4", "<f4", ">f4"]
|
||||
_Float64Codes = Literal["float64", "f8", "=f8", "<f8", ">f8"]
|
||||
|
||||
_Complex64Codes = Literal["complex64", "c8", "=c8", "<c8", ">c8"]
|
||||
_Complex128Codes = Literal["complex128", "c16", "=c16", "<c16", ">c16"]
|
||||
|
||||
_ByteCodes = Literal["byte", "b", "=b", "<b", ">b"]
|
||||
_ShortCodes = Literal["short", "h", "=h", "<h", ">h"]
|
||||
_IntCCodes = Literal["intc", "i", "=i", "<i", ">i"]
|
||||
_IntPCodes = Literal["intp", "int0", "p", "=p", "<p", ">p"]
|
||||
_IntCodes = Literal["long", "int", "int_", "l", "=l", "<l", ">l"]
|
||||
_LongLongCodes = Literal["longlong", "q", "=q", "<q", ">q"]
|
||||
|
||||
_UByteCodes = Literal["ubyte", "B", "=B", "<B", ">B"]
|
||||
_UShortCodes = Literal["ushort", "H", "=H", "<H", ">H"]
|
||||
_UIntCCodes = Literal["uintc", "I", "=I", "<I", ">I"]
|
||||
_UIntPCodes = Literal["uintp", "uint0", "P", "=P", "<P", ">P"]
|
||||
_UIntCodes = Literal["ulong", "uint", "L", "=L", "<L", ">L"]
|
||||
_ULongLongCodes = Literal["ulonglong", "Q", "=Q", "<Q", ">Q"]
|
||||
|
||||
_HalfCodes = Literal["half", "e", "=e", "<e", ">e"]
|
||||
_SingleCodes = Literal["single", "f", "=f", "<f", ">f"]
|
||||
_DoubleCodes = Literal["double", "float", "float_", "d", "=d", "<d", ">d"]
|
||||
_LongDoubleCodes = Literal["longdouble", "longfloat", "g", "=g", "<g", ">g"]
|
||||
|
||||
_CSingleCodes = Literal["csingle", "singlecomplex", "F", "=F", "<F", ">F"]
|
||||
_CDoubleCodes = Literal["cdouble", "complex", "complex_", "cfloat", "D", "=D", "<D", ">D"]
|
||||
_CLongDoubleCodes = Literal["clongdouble", "clongfloat", "longcomplex", "G", "=G", "<G", ">G"]
|
||||
|
||||
_StrCodes = Literal["str", "str_", "str0", "unicode", "unicode_", "U", "=U", "<U", ">U"]
|
||||
_BytesCodes = Literal["bytes", "bytes_", "bytes0", "S", "=S", "<S", ">S"]
|
||||
_VoidCodes = Literal["void", "void0", "V", "=V", "<V", ">V"]
|
||||
_ObjectCodes = Literal["object", "object_", "O", "=O", "<O", ">O"]
|
||||
|
||||
_DT64Codes = Literal[
|
||||
"datetime64", "=datetime64", "<datetime64", ">datetime64",
|
||||
"datetime64[Y]", "=datetime64[Y]", "<datetime64[Y]", ">datetime64[Y]",
|
||||
"datetime64[M]", "=datetime64[M]", "<datetime64[M]", ">datetime64[M]",
|
||||
"datetime64[W]", "=datetime64[W]", "<datetime64[W]", ">datetime64[W]",
|
||||
"datetime64[D]", "=datetime64[D]", "<datetime64[D]", ">datetime64[D]",
|
||||
"datetime64[h]", "=datetime64[h]", "<datetime64[h]", ">datetime64[h]",
|
||||
"datetime64[m]", "=datetime64[m]", "<datetime64[m]", ">datetime64[m]",
|
||||
"datetime64[s]", "=datetime64[s]", "<datetime64[s]", ">datetime64[s]",
|
||||
"datetime64[ms]", "=datetime64[ms]", "<datetime64[ms]", ">datetime64[ms]",
|
||||
"datetime64[us]", "=datetime64[us]", "<datetime64[us]", ">datetime64[us]",
|
||||
"datetime64[ns]", "=datetime64[ns]", "<datetime64[ns]", ">datetime64[ns]",
|
||||
"datetime64[ps]", "=datetime64[ps]", "<datetime64[ps]", ">datetime64[ps]",
|
||||
"datetime64[fs]", "=datetime64[fs]", "<datetime64[fs]", ">datetime64[fs]",
|
||||
"datetime64[as]", "=datetime64[as]", "<datetime64[as]", ">datetime64[as]",
|
||||
"M", "=M", "<M", ">M",
|
||||
"M8", "=M8", "<M8", ">M8",
|
||||
"M8[Y]", "=M8[Y]", "<M8[Y]", ">M8[Y]",
|
||||
"M8[M]", "=M8[M]", "<M8[M]", ">M8[M]",
|
||||
"M8[W]", "=M8[W]", "<M8[W]", ">M8[W]",
|
||||
"M8[D]", "=M8[D]", "<M8[D]", ">M8[D]",
|
||||
"M8[h]", "=M8[h]", "<M8[h]", ">M8[h]",
|
||||
"M8[m]", "=M8[m]", "<M8[m]", ">M8[m]",
|
||||
"M8[s]", "=M8[s]", "<M8[s]", ">M8[s]",
|
||||
"M8[ms]", "=M8[ms]", "<M8[ms]", ">M8[ms]",
|
||||
"M8[us]", "=M8[us]", "<M8[us]", ">M8[us]",
|
||||
"M8[ns]", "=M8[ns]", "<M8[ns]", ">M8[ns]",
|
||||
"M8[ps]", "=M8[ps]", "<M8[ps]", ">M8[ps]",
|
||||
"M8[fs]", "=M8[fs]", "<M8[fs]", ">M8[fs]",
|
||||
"M8[as]", "=M8[as]", "<M8[as]", ">M8[as]",
|
||||
]
|
||||
_TD64Codes = Literal[
|
||||
"timedelta64", "=timedelta64", "<timedelta64", ">timedelta64",
|
||||
"timedelta64[Y]", "=timedelta64[Y]", "<timedelta64[Y]", ">timedelta64[Y]",
|
||||
"timedelta64[M]", "=timedelta64[M]", "<timedelta64[M]", ">timedelta64[M]",
|
||||
"timedelta64[W]", "=timedelta64[W]", "<timedelta64[W]", ">timedelta64[W]",
|
||||
"timedelta64[D]", "=timedelta64[D]", "<timedelta64[D]", ">timedelta64[D]",
|
||||
"timedelta64[h]", "=timedelta64[h]", "<timedelta64[h]", ">timedelta64[h]",
|
||||
"timedelta64[m]", "=timedelta64[m]", "<timedelta64[m]", ">timedelta64[m]",
|
||||
"timedelta64[s]", "=timedelta64[s]", "<timedelta64[s]", ">timedelta64[s]",
|
||||
"timedelta64[ms]", "=timedelta64[ms]", "<timedelta64[ms]", ">timedelta64[ms]",
|
||||
"timedelta64[us]", "=timedelta64[us]", "<timedelta64[us]", ">timedelta64[us]",
|
||||
"timedelta64[ns]", "=timedelta64[ns]", "<timedelta64[ns]", ">timedelta64[ns]",
|
||||
"timedelta64[ps]", "=timedelta64[ps]", "<timedelta64[ps]", ">timedelta64[ps]",
|
||||
"timedelta64[fs]", "=timedelta64[fs]", "<timedelta64[fs]", ">timedelta64[fs]",
|
||||
"timedelta64[as]", "=timedelta64[as]", "<timedelta64[as]", ">timedelta64[as]",
|
||||
"m", "=m", "<m", ">m",
|
||||
"m8", "=m8", "<m8", ">m8",
|
||||
"m8[Y]", "=m8[Y]", "<m8[Y]", ">m8[Y]",
|
||||
"m8[M]", "=m8[M]", "<m8[M]", ">m8[M]",
|
||||
"m8[W]", "=m8[W]", "<m8[W]", ">m8[W]",
|
||||
"m8[D]", "=m8[D]", "<m8[D]", ">m8[D]",
|
||||
"m8[h]", "=m8[h]", "<m8[h]", ">m8[h]",
|
||||
"m8[m]", "=m8[m]", "<m8[m]", ">m8[m]",
|
||||
"m8[s]", "=m8[s]", "<m8[s]", ">m8[s]",
|
||||
"m8[ms]", "=m8[ms]", "<m8[ms]", ">m8[ms]",
|
||||
"m8[us]", "=m8[us]", "<m8[us]", ">m8[us]",
|
||||
"m8[ns]", "=m8[ns]", "<m8[ns]", ">m8[ns]",
|
||||
"m8[ps]", "=m8[ps]", "<m8[ps]", ">m8[ps]",
|
||||
"m8[fs]", "=m8[fs]", "<m8[fs]", ">m8[fs]",
|
||||
"m8[as]", "=m8[as]", "<m8[as]", ">m8[as]",
|
||||
]
|
||||
@@ -0,0 +1,249 @@
|
||||
from typing import (
|
||||
Any,
|
||||
List,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
Type,
|
||||
TypeVar,
|
||||
Protocol,
|
||||
TypedDict,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ._shape import _ShapeLike
|
||||
from ._generic_alias import _DType as DType
|
||||
|
||||
from ._char_codes import (
|
||||
_BoolCodes,
|
||||
_UInt8Codes,
|
||||
_UInt16Codes,
|
||||
_UInt32Codes,
|
||||
_UInt64Codes,
|
||||
_Int8Codes,
|
||||
_Int16Codes,
|
||||
_Int32Codes,
|
||||
_Int64Codes,
|
||||
_Float16Codes,
|
||||
_Float32Codes,
|
||||
_Float64Codes,
|
||||
_Complex64Codes,
|
||||
_Complex128Codes,
|
||||
_ByteCodes,
|
||||
_ShortCodes,
|
||||
_IntCCodes,
|
||||
_IntPCodes,
|
||||
_IntCodes,
|
||||
_LongLongCodes,
|
||||
_UByteCodes,
|
||||
_UShortCodes,
|
||||
_UIntCCodes,
|
||||
_UIntPCodes,
|
||||
_UIntCodes,
|
||||
_ULongLongCodes,
|
||||
_HalfCodes,
|
||||
_SingleCodes,
|
||||
_DoubleCodes,
|
||||
_LongDoubleCodes,
|
||||
_CSingleCodes,
|
||||
_CDoubleCodes,
|
||||
_CLongDoubleCodes,
|
||||
_DT64Codes,
|
||||
_TD64Codes,
|
||||
_StrCodes,
|
||||
_BytesCodes,
|
||||
_VoidCodes,
|
||||
_ObjectCodes,
|
||||
)
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=np.generic)
|
||||
_DType_co = TypeVar("_DType_co", covariant=True, bound=DType[Any])
|
||||
|
||||
_DTypeLikeNested = Any # TODO: wait for support for recursive types
|
||||
|
||||
|
||||
# Mandatory keys
|
||||
class _DTypeDictBase(TypedDict):
|
||||
names: Sequence[str]
|
||||
formats: Sequence[_DTypeLikeNested]
|
||||
|
||||
|
||||
# Mandatory + optional keys
|
||||
class _DTypeDict(_DTypeDictBase, total=False):
|
||||
# Only `str` elements are usable as indexing aliases,
|
||||
# but `titles` can in principle accept any object
|
||||
offsets: Sequence[int]
|
||||
titles: Sequence[Any]
|
||||
itemsize: int
|
||||
aligned: bool
|
||||
|
||||
|
||||
# A protocol for anything with the dtype attribute
|
||||
@runtime_checkable
|
||||
class _SupportsDType(Protocol[_DType_co]):
|
||||
@property
|
||||
def dtype(self) -> _DType_co: ...
|
||||
|
||||
|
||||
# A subset of `npt.DTypeLike` that can be parametrized w.r.t. `np.generic`
|
||||
_DTypeLike = Union[
|
||||
"np.dtype[_SCT]",
|
||||
Type[_SCT],
|
||||
_SupportsDType["np.dtype[_SCT]"],
|
||||
]
|
||||
|
||||
|
||||
# Would create a dtype[np.void]
|
||||
_VoidDTypeLike = Union[
|
||||
# (flexible_dtype, itemsize)
|
||||
Tuple[_DTypeLikeNested, int],
|
||||
# (fixed_dtype, shape)
|
||||
Tuple[_DTypeLikeNested, _ShapeLike],
|
||||
# [(field_name, field_dtype, field_shape), ...]
|
||||
#
|
||||
# The type here is quite broad because NumPy accepts quite a wide
|
||||
# range of inputs inside the list; see the tests for some
|
||||
# examples.
|
||||
List[Any],
|
||||
# {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ...,
|
||||
# 'itemsize': ...}
|
||||
_DTypeDict,
|
||||
# (base_dtype, new_dtype)
|
||||
Tuple[_DTypeLikeNested, _DTypeLikeNested],
|
||||
]
|
||||
|
||||
# Anything that can be coerced into numpy.dtype.
|
||||
# Reference: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
|
||||
DTypeLike = Union[
|
||||
DType[Any],
|
||||
# default data type (float64)
|
||||
None,
|
||||
# array-scalar types and generic types
|
||||
Type[Any], # NOTE: We're stuck with `Type[Any]` due to object dtypes
|
||||
# anything with a dtype attribute
|
||||
_SupportsDType[DType[Any]],
|
||||
# character codes, type strings or comma-separated fields, e.g., 'float64'
|
||||
str,
|
||||
_VoidDTypeLike,
|
||||
]
|
||||
|
||||
# NOTE: while it is possible to provide the dtype as a dict of
|
||||
# dtype-like objects (e.g. `{'field1': ..., 'field2': ..., ...}`),
|
||||
# this syntax is officially discourged and
|
||||
# therefore not included in the Union defining `DTypeLike`.
|
||||
#
|
||||
# See https://github.com/numpy/numpy/issues/16891 for more details.
|
||||
|
||||
# Aliases for commonly used dtype-like objects.
|
||||
# Note that the precision of `np.number` subclasses is ignored herein.
|
||||
_DTypeLikeBool = Union[
|
||||
Type[bool],
|
||||
Type[np.bool_],
|
||||
DType[np.bool_],
|
||||
_SupportsDType[DType[np.bool_]],
|
||||
_BoolCodes,
|
||||
]
|
||||
_DTypeLikeUInt = Union[
|
||||
Type[np.unsignedinteger],
|
||||
DType[np.unsignedinteger],
|
||||
_SupportsDType[DType[np.unsignedinteger]],
|
||||
_UInt8Codes,
|
||||
_UInt16Codes,
|
||||
_UInt32Codes,
|
||||
_UInt64Codes,
|
||||
_UByteCodes,
|
||||
_UShortCodes,
|
||||
_UIntCCodes,
|
||||
_UIntPCodes,
|
||||
_UIntCodes,
|
||||
_ULongLongCodes,
|
||||
]
|
||||
_DTypeLikeInt = Union[
|
||||
Type[int],
|
||||
Type[np.signedinteger],
|
||||
DType[np.signedinteger],
|
||||
_SupportsDType[DType[np.signedinteger]],
|
||||
_Int8Codes,
|
||||
_Int16Codes,
|
||||
_Int32Codes,
|
||||
_Int64Codes,
|
||||
_ByteCodes,
|
||||
_ShortCodes,
|
||||
_IntCCodes,
|
||||
_IntPCodes,
|
||||
_IntCodes,
|
||||
_LongLongCodes,
|
||||
]
|
||||
_DTypeLikeFloat = Union[
|
||||
Type[float],
|
||||
Type[np.floating],
|
||||
DType[np.floating],
|
||||
_SupportsDType[DType[np.floating]],
|
||||
_Float16Codes,
|
||||
_Float32Codes,
|
||||
_Float64Codes,
|
||||
_HalfCodes,
|
||||
_SingleCodes,
|
||||
_DoubleCodes,
|
||||
_LongDoubleCodes,
|
||||
]
|
||||
_DTypeLikeComplex = Union[
|
||||
Type[complex],
|
||||
Type[np.complexfloating],
|
||||
DType[np.complexfloating],
|
||||
_SupportsDType[DType[np.complexfloating]],
|
||||
_Complex64Codes,
|
||||
_Complex128Codes,
|
||||
_CSingleCodes,
|
||||
_CDoubleCodes,
|
||||
_CLongDoubleCodes,
|
||||
]
|
||||
_DTypeLikeDT64 = Union[
|
||||
Type[np.timedelta64],
|
||||
DType[np.timedelta64],
|
||||
_SupportsDType[DType[np.timedelta64]],
|
||||
_TD64Codes,
|
||||
]
|
||||
_DTypeLikeTD64 = Union[
|
||||
Type[np.datetime64],
|
||||
DType[np.datetime64],
|
||||
_SupportsDType[DType[np.datetime64]],
|
||||
_DT64Codes,
|
||||
]
|
||||
_DTypeLikeStr = Union[
|
||||
Type[str],
|
||||
Type[np.str_],
|
||||
DType[np.str_],
|
||||
_SupportsDType[DType[np.str_]],
|
||||
_StrCodes,
|
||||
]
|
||||
_DTypeLikeBytes = Union[
|
||||
Type[bytes],
|
||||
Type[np.bytes_],
|
||||
DType[np.bytes_],
|
||||
_SupportsDType[DType[np.bytes_]],
|
||||
_BytesCodes,
|
||||
]
|
||||
_DTypeLikeVoid = Union[
|
||||
Type[np.void],
|
||||
DType[np.void],
|
||||
_SupportsDType[DType[np.void]],
|
||||
_VoidCodes,
|
||||
_VoidDTypeLike,
|
||||
]
|
||||
_DTypeLikeObject = Union[
|
||||
type,
|
||||
DType[np.object_],
|
||||
_SupportsDType[DType[np.object_]],
|
||||
_ObjectCodes,
|
||||
]
|
||||
|
||||
_DTypeLikeComplex_co = Union[
|
||||
_DTypeLikeBool,
|
||||
_DTypeLikeUInt,
|
||||
_DTypeLikeInt,
|
||||
_DTypeLikeFloat,
|
||||
_DTypeLikeComplex,
|
||||
]
|
||||
@@ -0,0 +1,43 @@
|
||||
"""A module with platform-specific extended precision
|
||||
`numpy.number` subclasses.
|
||||
|
||||
The subclasses are defined here (instead of ``__init__.pyi``) such
|
||||
that they can be imported conditionally via the numpy's mypy plugin.
|
||||
"""
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
from . import (
|
||||
_80Bit,
|
||||
_96Bit,
|
||||
_128Bit,
|
||||
_256Bit,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
uint128 = np.unsignedinteger[_128Bit]
|
||||
uint256 = np.unsignedinteger[_256Bit]
|
||||
int128 = np.signedinteger[_128Bit]
|
||||
int256 = np.signedinteger[_256Bit]
|
||||
float80 = np.floating[_80Bit]
|
||||
float96 = np.floating[_96Bit]
|
||||
float128 = np.floating[_128Bit]
|
||||
float256 = np.floating[_256Bit]
|
||||
complex160 = np.complexfloating[_80Bit, _80Bit]
|
||||
complex192 = np.complexfloating[_96Bit, _96Bit]
|
||||
complex256 = np.complexfloating[_128Bit, _128Bit]
|
||||
complex512 = np.complexfloating[_256Bit, _256Bit]
|
||||
else:
|
||||
uint128 = Any
|
||||
uint256 = Any
|
||||
int128 = Any
|
||||
int256 = Any
|
||||
float80 = Any
|
||||
float96 = Any
|
||||
float128 = Any
|
||||
float256 = Any
|
||||
complex160 = Any
|
||||
complex192 = Any
|
||||
complex256 = Any
|
||||
complex512 = Any
|
||||
@@ -0,0 +1,245 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
import types
|
||||
from collections.abc import Generator, Iterable, Iterator
|
||||
from typing import (
|
||||
Any,
|
||||
ClassVar,
|
||||
NoReturn,
|
||||
TypeVar,
|
||||
TYPE_CHECKING,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
__all__ = ["_GenericAlias", "NDArray"]
|
||||
|
||||
_T = TypeVar("_T", bound="_GenericAlias")
|
||||
|
||||
|
||||
def _to_str(obj: object) -> str:
|
||||
"""Helper function for `_GenericAlias.__repr__`."""
|
||||
if obj is Ellipsis:
|
||||
return '...'
|
||||
elif isinstance(obj, type) and not isinstance(obj, _GENERIC_ALIAS_TYPE):
|
||||
if obj.__module__ == 'builtins':
|
||||
return obj.__qualname__
|
||||
else:
|
||||
return f'{obj.__module__}.{obj.__qualname__}'
|
||||
else:
|
||||
return repr(obj)
|
||||
|
||||
|
||||
def _parse_parameters(args: Iterable[Any]) -> Generator[TypeVar, None, None]:
|
||||
"""Search for all typevars and typevar-containing objects in `args`.
|
||||
|
||||
Helper function for `_GenericAlias.__init__`.
|
||||
|
||||
"""
|
||||
for i in args:
|
||||
if hasattr(i, "__parameters__"):
|
||||
yield from i.__parameters__
|
||||
elif isinstance(i, TypeVar):
|
||||
yield i
|
||||
|
||||
|
||||
def _reconstruct_alias(alias: _T, parameters: Iterator[TypeVar]) -> _T:
|
||||
"""Recursively replace all typevars with those from `parameters`.
|
||||
|
||||
Helper function for `_GenericAlias.__getitem__`.
|
||||
|
||||
"""
|
||||
args = []
|
||||
for i in alias.__args__:
|
||||
if isinstance(i, TypeVar):
|
||||
value: Any = next(parameters)
|
||||
elif isinstance(i, _GenericAlias):
|
||||
value = _reconstruct_alias(i, parameters)
|
||||
elif hasattr(i, "__parameters__"):
|
||||
prm_tup = tuple(next(parameters) for _ in i.__parameters__)
|
||||
value = i[prm_tup]
|
||||
else:
|
||||
value = i
|
||||
args.append(value)
|
||||
|
||||
cls = type(alias)
|
||||
return cls(alias.__origin__, tuple(args), alias.__unpacked__)
|
||||
|
||||
|
||||
class _GenericAlias:
|
||||
"""A python-based backport of the `types.GenericAlias` class.
|
||||
|
||||
E.g. for ``t = list[int]``, ``t.__origin__`` is ``list`` and
|
||||
``t.__args__`` is ``(int,)``.
|
||||
|
||||
See Also
|
||||
--------
|
||||
:pep:`585`
|
||||
The PEP responsible for introducing `types.GenericAlias`.
|
||||
|
||||
"""
|
||||
|
||||
__slots__ = (
|
||||
"__weakref__",
|
||||
"_origin",
|
||||
"_args",
|
||||
"_parameters",
|
||||
"_hash",
|
||||
"_starred",
|
||||
)
|
||||
|
||||
@property
|
||||
def __origin__(self) -> type:
|
||||
return super().__getattribute__("_origin")
|
||||
|
||||
@property
|
||||
def __args__(self) -> tuple[object, ...]:
|
||||
return super().__getattribute__("_args")
|
||||
|
||||
@property
|
||||
def __parameters__(self) -> tuple[TypeVar, ...]:
|
||||
"""Type variables in the ``GenericAlias``."""
|
||||
return super().__getattribute__("_parameters")
|
||||
|
||||
@property
|
||||
def __unpacked__(self) -> bool:
|
||||
return super().__getattribute__("_starred")
|
||||
|
||||
@property
|
||||
def __typing_unpacked_tuple_args__(self) -> tuple[object, ...] | None:
|
||||
# NOTE: This should return `__args__` if `__origin__` is a tuple,
|
||||
# which should never be the case with how `_GenericAlias` is used
|
||||
# within numpy
|
||||
return None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
origin: type,
|
||||
args: object | tuple[object, ...],
|
||||
starred: bool = False,
|
||||
) -> None:
|
||||
self._origin = origin
|
||||
self._args = args if isinstance(args, tuple) else (args,)
|
||||
self._parameters = tuple(_parse_parameters(self.__args__))
|
||||
self._starred = starred
|
||||
|
||||
@property
|
||||
def __call__(self) -> type[Any]:
|
||||
return self.__origin__
|
||||
|
||||
def __reduce__(self: _T) -> tuple[
|
||||
type[_T],
|
||||
tuple[type[Any], tuple[object, ...], bool],
|
||||
]:
|
||||
cls = type(self)
|
||||
return cls, (self.__origin__, self.__args__, self.__unpacked__)
|
||||
|
||||
def __mro_entries__(self, bases: Iterable[object]) -> tuple[type[Any]]:
|
||||
return (self.__origin__,)
|
||||
|
||||
def __dir__(self) -> list[str]:
|
||||
"""Implement ``dir(self)``."""
|
||||
cls = type(self)
|
||||
dir_origin = set(dir(self.__origin__))
|
||||
return sorted(cls._ATTR_EXCEPTIONS | dir_origin)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Return ``hash(self)``."""
|
||||
# Attempt to use the cached hash
|
||||
try:
|
||||
return super().__getattribute__("_hash")
|
||||
except AttributeError:
|
||||
self._hash: int = (
|
||||
hash(self.__origin__) ^
|
||||
hash(self.__args__) ^
|
||||
hash(self.__unpacked__)
|
||||
)
|
||||
return super().__getattribute__("_hash")
|
||||
|
||||
def __instancecheck__(self, obj: object) -> NoReturn:
|
||||
"""Check if an `obj` is an instance."""
|
||||
raise TypeError("isinstance() argument 2 cannot be a "
|
||||
"parameterized generic")
|
||||
|
||||
def __subclasscheck__(self, cls: type) -> NoReturn:
|
||||
"""Check if a `cls` is a subclass."""
|
||||
raise TypeError("issubclass() argument 2 cannot be a "
|
||||
"parameterized generic")
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Return ``repr(self)``."""
|
||||
args = ", ".join(_to_str(i) for i in self.__args__)
|
||||
origin = _to_str(self.__origin__)
|
||||
prefix = "*" if self.__unpacked__ else ""
|
||||
return f"{prefix}{origin}[{args}]"
|
||||
|
||||
def __getitem__(self: _T, key: object | tuple[object, ...]) -> _T:
|
||||
"""Return ``self[key]``."""
|
||||
key_tup = key if isinstance(key, tuple) else (key,)
|
||||
|
||||
if len(self.__parameters__) == 0:
|
||||
raise TypeError(f"There are no type variables left in {self}")
|
||||
elif len(key_tup) > len(self.__parameters__):
|
||||
raise TypeError(f"Too many arguments for {self}")
|
||||
elif len(key_tup) < len(self.__parameters__):
|
||||
raise TypeError(f"Too few arguments for {self}")
|
||||
|
||||
key_iter = iter(key_tup)
|
||||
return _reconstruct_alias(self, key_iter)
|
||||
|
||||
def __eq__(self, value: object) -> bool:
|
||||
"""Return ``self == value``."""
|
||||
if not isinstance(value, _GENERIC_ALIAS_TYPE):
|
||||
return NotImplemented
|
||||
return (
|
||||
self.__origin__ == value.__origin__ and
|
||||
self.__args__ == value.__args__ and
|
||||
self.__unpacked__ == getattr(
|
||||
value, "__unpacked__", self.__unpacked__
|
||||
)
|
||||
)
|
||||
|
||||
def __iter__(self: _T) -> Generator[_T, None, None]:
|
||||
"""Return ``iter(self)``."""
|
||||
cls = type(self)
|
||||
yield cls(self.__origin__, self.__args__, True)
|
||||
|
||||
_ATTR_EXCEPTIONS: ClassVar[frozenset[str]] = frozenset({
|
||||
"__origin__",
|
||||
"__args__",
|
||||
"__parameters__",
|
||||
"__mro_entries__",
|
||||
"__reduce__",
|
||||
"__reduce_ex__",
|
||||
"__copy__",
|
||||
"__deepcopy__",
|
||||
"__unpacked__",
|
||||
"__typing_unpacked_tuple_args__",
|
||||
"__class__",
|
||||
})
|
||||
|
||||
def __getattribute__(self, name: str) -> Any:
|
||||
"""Return ``getattr(self, name)``."""
|
||||
# Pull the attribute from `__origin__` unless its
|
||||
# name is in `_ATTR_EXCEPTIONS`
|
||||
cls = type(self)
|
||||
if name in cls._ATTR_EXCEPTIONS:
|
||||
return super().__getattribute__(name)
|
||||
return getattr(self.__origin__, name)
|
||||
|
||||
|
||||
# See `_GenericAlias.__eq__`
|
||||
if sys.version_info >= (3, 9):
|
||||
_GENERIC_ALIAS_TYPE = (_GenericAlias, types.GenericAlias)
|
||||
else:
|
||||
_GENERIC_ALIAS_TYPE = (_GenericAlias,)
|
||||
|
||||
ScalarType = TypeVar("ScalarType", bound=np.generic, covariant=True)
|
||||
|
||||
if TYPE_CHECKING or sys.version_info >= (3, 9):
|
||||
_DType = np.dtype[ScalarType]
|
||||
NDArray = np.ndarray[Any, np.dtype[ScalarType]]
|
||||
else:
|
||||
_DType = _GenericAlias(np.dtype, (ScalarType,))
|
||||
NDArray = _GenericAlias(np.ndarray, (Any, _DType))
|
||||
@@ -0,0 +1,16 @@
|
||||
"""A module with the precisions of platform-specific `~numpy.number`s."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
# To-be replaced with a `npt.NBitBase` subclass by numpy's mypy plugin
|
||||
_NBitByte = Any
|
||||
_NBitShort = Any
|
||||
_NBitIntC = Any
|
||||
_NBitIntP = Any
|
||||
_NBitInt = Any
|
||||
_NBitLongLong = Any
|
||||
|
||||
_NBitHalf = Any
|
||||
_NBitSingle = Any
|
||||
_NBitDouble = Any
|
||||
_NBitLongDouble = Any
|
||||
@@ -0,0 +1,92 @@
|
||||
"""A module containing the `_NestedSequence` protocol."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Iterator,
|
||||
overload,
|
||||
TypeVar,
|
||||
Protocol,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
__all__ = ["_NestedSequence"]
|
||||
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class _NestedSequence(Protocol[_T_co]):
|
||||
"""A protocol for representing nested sequences.
|
||||
|
||||
Warning
|
||||
-------
|
||||
`_NestedSequence` currently does not work in combination with typevars,
|
||||
*e.g.* ``def func(a: _NestedSequnce[T]) -> T: ...``.
|
||||
|
||||
See Also
|
||||
--------
|
||||
collections.abc.Sequence
|
||||
ABCs for read-only and mutable :term:`sequences`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. code-block:: python
|
||||
|
||||
>>> from __future__ import annotations
|
||||
|
||||
>>> from typing import TYPE_CHECKING
|
||||
>>> import numpy as np
|
||||
>>> from numpy._typing import _NestedSequence
|
||||
|
||||
>>> def get_dtype(seq: _NestedSequence[float]) -> np.dtype[np.float64]:
|
||||
... return np.asarray(seq).dtype
|
||||
|
||||
>>> a = get_dtype([1.0])
|
||||
>>> b = get_dtype([[1.0]])
|
||||
>>> c = get_dtype([[[1.0]]])
|
||||
>>> d = get_dtype([[[[1.0]]]])
|
||||
|
||||
>>> if TYPE_CHECKING:
|
||||
... reveal_locals()
|
||||
... # note: Revealed local types are:
|
||||
... # note: a: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
... # note: b: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
... # note: c: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
... # note: d: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
||||
|
||||
"""
|
||||
|
||||
def __len__(self, /) -> int:
|
||||
"""Implement ``len(self)``."""
|
||||
raise NotImplementedError
|
||||
|
||||
@overload
|
||||
def __getitem__(self, index: int, /) -> _T_co | _NestedSequence[_T_co]: ...
|
||||
@overload
|
||||
def __getitem__(self, index: slice, /) -> _NestedSequence[_T_co]: ...
|
||||
|
||||
def __getitem__(self, index, /):
|
||||
"""Implement ``self[x]``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __contains__(self, x: object, /) -> bool:
|
||||
"""Implement ``x in self``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
||||
"""Implement ``iter(self)``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
||||
"""Implement ``reversed(self)``."""
|
||||
raise NotImplementedError
|
||||
|
||||
def count(self, value: Any, /) -> int:
|
||||
"""Return the number of occurrences of `value`."""
|
||||
raise NotImplementedError
|
||||
|
||||
def index(self, value: Any, /) -> int:
|
||||
"""Return the first index of `value`."""
|
||||
raise NotImplementedError
|
||||
@@ -0,0 +1,30 @@
|
||||
from typing import Union, Tuple, Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
# NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and
|
||||
# `np.bytes_` are already subclasses of their builtin counterpart
|
||||
|
||||
_CharLike_co = Union[str, bytes]
|
||||
|
||||
# The 6 `<X>Like_co` type-aliases below represent all scalars that can be
|
||||
# coerced into `<X>` (with the casting rule `same_kind`)
|
||||
_BoolLike_co = Union[bool, np.bool_]
|
||||
_UIntLike_co = Union[_BoolLike_co, np.unsignedinteger]
|
||||
_IntLike_co = Union[_BoolLike_co, int, np.integer]
|
||||
_FloatLike_co = Union[_IntLike_co, float, np.floating]
|
||||
_ComplexLike_co = Union[_FloatLike_co, complex, np.complexfloating]
|
||||
_TD64Like_co = Union[_IntLike_co, np.timedelta64]
|
||||
|
||||
_NumberLike_co = Union[int, float, complex, np.number, np.bool_]
|
||||
_ScalarLike_co = Union[
|
||||
int,
|
||||
float,
|
||||
complex,
|
||||
str,
|
||||
bytes,
|
||||
np.generic,
|
||||
]
|
||||
|
||||
# `_VoidLike_co` is technically not a scalar, but it's close enough
|
||||
_VoidLike_co = Union[Tuple[Any, ...], np.void]
|
||||
@@ -0,0 +1,6 @@
|
||||
from typing import Sequence, Tuple, Union, SupportsIndex
|
||||
|
||||
_Shape = Tuple[int, ...]
|
||||
|
||||
# Anything that can be coerced to a shape tuple
|
||||
_ShapeLike = Union[SupportsIndex, Sequence[SupportsIndex]]
|
||||
@@ -0,0 +1,445 @@
|
||||
"""A module with private type-check-only `numpy.ufunc` subclasses.
|
||||
|
||||
The signatures of the ufuncs are too varied to reasonably type
|
||||
with a single class. So instead, `ufunc` has been expanded into
|
||||
four private subclasses, one for each combination of
|
||||
`~ufunc.nin` and `~ufunc.nout`.
|
||||
|
||||
"""
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Generic,
|
||||
overload,
|
||||
TypeVar,
|
||||
Literal,
|
||||
SupportsIndex,
|
||||
Protocol,
|
||||
)
|
||||
|
||||
from numpy import ufunc, _CastingKind, _OrderKACF
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ._shape import _ShapeLike
|
||||
from ._scalars import _ScalarLike_co
|
||||
from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co
|
||||
from ._dtype_like import DTypeLike
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_2Tuple = tuple[_T, _T]
|
||||
_3Tuple = tuple[_T, _T, _T]
|
||||
_4Tuple = tuple[_T, _T, _T, _T]
|
||||
|
||||
_NTypes = TypeVar("_NTypes", bound=int)
|
||||
_IDType = TypeVar("_IDType", bound=Any)
|
||||
_NameType = TypeVar("_NameType", bound=str)
|
||||
|
||||
|
||||
class _SupportsArrayUFunc(Protocol):
|
||||
def __array_ufunc__(
|
||||
self,
|
||||
ufunc: ufunc,
|
||||
method: Literal["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
|
||||
*inputs: Any,
|
||||
**kwargs: Any,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
# NOTE: In reality `extobj` should be a length of list 3 containing an
|
||||
# int, an int, and a callable, but there's no way to properly express
|
||||
# non-homogenous lists.
|
||||
# Use `Any` over `Union` to avoid issues related to lists invariance.
|
||||
|
||||
# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for
|
||||
# ufuncs that don't accept two input arguments and return one output argument.
|
||||
# In such cases the respective methods are simply typed as `None`.
|
||||
|
||||
# NOTE: Similarly, `at` won't be defined for ufuncs that return
|
||||
# multiple outputs; in such cases `at` is typed as `None`
|
||||
|
||||
# NOTE: If 2 output types are returned then `out` must be a
|
||||
# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable
|
||||
|
||||
class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[2]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
out: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _2Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _2Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _SupportsArrayUFunc,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _2Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def at(
|
||||
self,
|
||||
a: _SupportsArrayUFunc,
|
||||
indices: _ArrayLikeInt_co,
|
||||
/,
|
||||
) -> None: ...
|
||||
|
||||
class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[3]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
__x2: _ScalarLike_co,
|
||||
out: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def at(
|
||||
self,
|
||||
a: NDArray[Any],
|
||||
indices: _ArrayLikeInt_co,
|
||||
b: ArrayLike,
|
||||
/,
|
||||
) -> None: ...
|
||||
|
||||
def reduce(
|
||||
self,
|
||||
array: ArrayLike,
|
||||
axis: None | _ShapeLike = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: None | NDArray[Any] = ...,
|
||||
keepdims: bool = ...,
|
||||
initial: Any = ...,
|
||||
where: _ArrayLikeBool_co = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def accumulate(
|
||||
self,
|
||||
array: ArrayLike,
|
||||
axis: SupportsIndex = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: None | NDArray[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def reduceat(
|
||||
self,
|
||||
array: ArrayLike,
|
||||
indices: _ArrayLikeInt_co,
|
||||
axis: SupportsIndex = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: None | NDArray[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
# Expand `**kwargs` into explicit keyword-only arguments
|
||||
@overload
|
||||
def outer(
|
||||
self,
|
||||
A: _ScalarLike_co,
|
||||
B: _ScalarLike_co,
|
||||
/, *,
|
||||
out: None = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def outer( # type: ignore[misc]
|
||||
self,
|
||||
A: ArrayLike,
|
||||
B: ArrayLike,
|
||||
/, *,
|
||||
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[3]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
@property
|
||||
def at(self) -> None: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
__out1: None = ...,
|
||||
__out2: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__out1: None | NDArray[Any] = ...,
|
||||
__out2: None | NDArray[Any] = ...,
|
||||
*,
|
||||
out: _2Tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[NDArray[Any]]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _SupportsArrayUFunc,
|
||||
__out1: None | NDArray[Any] = ...,
|
||||
__out2: None | NDArray[Any] = ...,
|
||||
*,
|
||||
out: _2Tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[Any]: ...
|
||||
|
||||
class _UFunc_Nin2_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[4]: ...
|
||||
@property
|
||||
def signature(self) -> None: ...
|
||||
@property
|
||||
def at(self) -> None: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: _ScalarLike_co,
|
||||
__x2: _ScalarLike_co,
|
||||
__out1: None = ...,
|
||||
__out2: None = ...,
|
||||
*,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _4Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[Any]: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
__out1: None | NDArray[Any] = ...,
|
||||
__out2: None | NDArray[Any] = ...,
|
||||
*,
|
||||
out: _2Tuple[NDArray[Any]] = ...,
|
||||
where: None | _ArrayLikeBool_co = ...,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _4Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
) -> _2Tuple[NDArray[Any]]: ...
|
||||
|
||||
class _GUFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
||||
@property
|
||||
def __name__(self) -> _NameType: ...
|
||||
@property
|
||||
def ntypes(self) -> _NTypes: ...
|
||||
@property
|
||||
def identity(self) -> _IDType: ...
|
||||
@property
|
||||
def nin(self) -> Literal[2]: ...
|
||||
@property
|
||||
def nout(self) -> Literal[1]: ...
|
||||
@property
|
||||
def nargs(self) -> Literal[3]: ...
|
||||
|
||||
# NOTE: In practice the only gufunc in the main namespace is `matmul`,
|
||||
# so we can use its signature here
|
||||
@property
|
||||
def signature(self) -> Literal["(n?,k),(k,m?)->(n?,m?)"]: ...
|
||||
@property
|
||||
def reduce(self) -> None: ...
|
||||
@property
|
||||
def accumulate(self) -> None: ...
|
||||
@property
|
||||
def reduceat(self) -> None: ...
|
||||
@property
|
||||
def outer(self) -> None: ...
|
||||
@property
|
||||
def at(self) -> None: ...
|
||||
|
||||
# Scalar for 1D array-likes; ndarray otherwise
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
out: None = ...,
|
||||
*,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
axes: list[_2Tuple[SupportsIndex]] = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def __call__(
|
||||
self,
|
||||
__x1: ArrayLike,
|
||||
__x2: ArrayLike,
|
||||
out: NDArray[Any] | tuple[NDArray[Any]],
|
||||
*,
|
||||
casting: _CastingKind = ...,
|
||||
order: _OrderKACF = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
subok: bool = ...,
|
||||
signature: str | _3Tuple[None | str] = ...,
|
||||
extobj: list[Any] = ...,
|
||||
axes: list[_2Tuple[SupportsIndex]] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
@@ -0,0 +1,10 @@
|
||||
def configuration(parent_package='', top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
config = Configuration('_typing', parent_package, top_path)
|
||||
config.add_data_files('*.pyi')
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
||||
@@ -0,0 +1,21 @@
|
||||
|
||||
# This file was generated by 'versioneer.py' (0.26) from
|
||||
# revision-control system data, or from the parent directory name of an
|
||||
# unpacked source archive. Distribution tarballs contain a pre-generated copy
|
||||
# of this file.
|
||||
|
||||
import json
|
||||
|
||||
version_json = '''
|
||||
{
|
||||
"date": "2023-06-25T20:31:30-0600",
|
||||
"dirty": false,
|
||||
"error": null,
|
||||
"full-revisionid": "9315a9072b2636f75c831b4eca9f42a5f67ca2fb",
|
||||
"version": "1.24.4"
|
||||
}
|
||||
''' # END VERSION_JSON
|
||||
|
||||
|
||||
def get_versions():
|
||||
return json.loads(version_json)
|
||||
@@ -0,0 +1,377 @@
|
||||
"""
|
||||
A NumPy sub-namespace that conforms to the Python array API standard.
|
||||
|
||||
This submodule accompanies NEP 47, which proposes its inclusion in NumPy. It
|
||||
is still considered experimental, and will issue a warning when imported.
|
||||
|
||||
This is a proof-of-concept namespace that wraps the corresponding NumPy
|
||||
functions to give a conforming implementation of the Python array API standard
|
||||
(https://data-apis.github.io/array-api/latest/). The standard is currently in
|
||||
an RFC phase and comments on it are both welcome and encouraged. Comments
|
||||
should be made either at https://github.com/data-apis/array-api or at
|
||||
https://github.com/data-apis/consortium-feedback/discussions.
|
||||
|
||||
NumPy already follows the proposed spec for the most part, so this module
|
||||
serves mostly as a thin wrapper around it. However, NumPy also implements a
|
||||
lot of behavior that is not included in the spec, so this serves as a
|
||||
restricted subset of the API. Only those functions that are part of the spec
|
||||
are included in this namespace, and all functions are given with the exact
|
||||
signature given in the spec, including the use of position-only arguments, and
|
||||
omitting any extra keyword arguments implemented by NumPy but not part of the
|
||||
spec. The behavior of some functions is also modified from the NumPy behavior
|
||||
to conform to the standard. Note that the underlying array object itself is
|
||||
wrapped in a wrapper Array() class, but is otherwise unchanged. This submodule
|
||||
is implemented in pure Python with no C extensions.
|
||||
|
||||
The array API spec is designed as a "minimal API subset" and explicitly allows
|
||||
libraries to include behaviors not specified by it. But users of this module
|
||||
that intend to write portable code should be aware that only those behaviors
|
||||
that are listed in the spec are guaranteed to be implemented across libraries.
|
||||
Consequently, the NumPy implementation was chosen to be both conforming and
|
||||
minimal, so that users can use this implementation of the array API namespace
|
||||
and be sure that behaviors that it defines will be available in conforming
|
||||
namespaces from other libraries.
|
||||
|
||||
A few notes about the current state of this submodule:
|
||||
|
||||
- There is a test suite that tests modules against the array API standard at
|
||||
https://github.com/data-apis/array-api-tests. The test suite is still a work
|
||||
in progress, but the existing tests pass on this module, with a few
|
||||
exceptions:
|
||||
|
||||
- DLPack support (see https://github.com/data-apis/array-api/pull/106) is
|
||||
not included here, as it requires a full implementation in NumPy proper
|
||||
first.
|
||||
|
||||
The test suite is not yet complete, and even the tests that exist are not
|
||||
guaranteed to give a comprehensive coverage of the spec. Therefore, when
|
||||
reviewing and using this submodule, you should refer to the standard
|
||||
documents themselves. There are some tests in numpy.array_api.tests, but
|
||||
they primarily focus on things that are not tested by the official array API
|
||||
test suite.
|
||||
|
||||
- There is a custom array object, numpy.array_api.Array, which is returned by
|
||||
all functions in this module. All functions in the array API namespace
|
||||
implicitly assume that they will only receive this object as input. The only
|
||||
way to create instances of this object is to use one of the array creation
|
||||
functions. It does not have a public constructor on the object itself. The
|
||||
object is a small wrapper class around numpy.ndarray. The main purpose of it
|
||||
is to restrict the namespace of the array object to only those dtypes and
|
||||
only those methods that are required by the spec, as well as to limit/change
|
||||
certain behavior that differs in the spec. In particular:
|
||||
|
||||
- The array API namespace does not have scalar objects, only 0-D arrays.
|
||||
Operations on Array that would create a scalar in NumPy create a 0-D
|
||||
array.
|
||||
|
||||
- Indexing: Only a subset of indices supported by NumPy are required by the
|
||||
spec. The Array object restricts indexing to only allow those types of
|
||||
indices that are required by the spec. See the docstring of the
|
||||
numpy.array_api.Array._validate_indices helper function for more
|
||||
information.
|
||||
|
||||
- Type promotion: Some type promotion rules are different in the spec. In
|
||||
particular, the spec does not have any value-based casting. The spec also
|
||||
does not require cross-kind casting, like integer -> floating-point. Only
|
||||
those promotions that are explicitly required by the array API
|
||||
specification are allowed in this module. See NEP 47 for more info.
|
||||
|
||||
- Functions do not automatically call asarray() on their input, and will not
|
||||
work if the input type is not Array. The exception is array creation
|
||||
functions, and Python operators on the Array object, which accept Python
|
||||
scalars of the same type as the array dtype.
|
||||
|
||||
- All functions include type annotations, corresponding to those given in the
|
||||
spec (see _typing.py for definitions of some custom types). These do not
|
||||
currently fully pass mypy due to some limitations in mypy.
|
||||
|
||||
- Dtype objects are just the NumPy dtype objects, e.g., float64 =
|
||||
np.dtype('float64'). The spec does not require any behavior on these dtype
|
||||
objects other than that they be accessible by name and be comparable by
|
||||
equality, but it was considered too much extra complexity to create custom
|
||||
objects to represent dtypes.
|
||||
|
||||
- All places where the implementations in this submodule are known to deviate
|
||||
from their corresponding functions in NumPy are marked with "# Note:"
|
||||
comments.
|
||||
|
||||
Still TODO in this module are:
|
||||
|
||||
- DLPack support for numpy.ndarray is still in progress. See
|
||||
https://github.com/numpy/numpy/pull/19083.
|
||||
|
||||
- The copy=False keyword argument to asarray() is not yet implemented. This
|
||||
requires support in numpy.asarray() first.
|
||||
|
||||
- Some functions are not yet fully tested in the array API test suite, and may
|
||||
require updates that are not yet known until the tests are written.
|
||||
|
||||
- The spec is still in an RFC phase and may still have minor updates, which
|
||||
will need to be reflected here.
|
||||
|
||||
- Complex number support in array API spec is planned but not yet finalized,
|
||||
as are the fft extension and certain linear algebra functions such as eig
|
||||
that require complex dtypes.
|
||||
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"The numpy.array_api submodule is still experimental. See NEP 47.", stacklevel=2
|
||||
)
|
||||
|
||||
__array_api_version__ = "2021.12"
|
||||
|
||||
__all__ = ["__array_api_version__"]
|
||||
|
||||
from ._constants import e, inf, nan, pi
|
||||
|
||||
__all__ += ["e", "inf", "nan", "pi"]
|
||||
|
||||
from ._creation_functions import (
|
||||
asarray,
|
||||
arange,
|
||||
empty,
|
||||
empty_like,
|
||||
eye,
|
||||
from_dlpack,
|
||||
full,
|
||||
full_like,
|
||||
linspace,
|
||||
meshgrid,
|
||||
ones,
|
||||
ones_like,
|
||||
tril,
|
||||
triu,
|
||||
zeros,
|
||||
zeros_like,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"asarray",
|
||||
"arange",
|
||||
"empty",
|
||||
"empty_like",
|
||||
"eye",
|
||||
"from_dlpack",
|
||||
"full",
|
||||
"full_like",
|
||||
"linspace",
|
||||
"meshgrid",
|
||||
"ones",
|
||||
"ones_like",
|
||||
"tril",
|
||||
"triu",
|
||||
"zeros",
|
||||
"zeros_like",
|
||||
]
|
||||
|
||||
from ._data_type_functions import (
|
||||
astype,
|
||||
broadcast_arrays,
|
||||
broadcast_to,
|
||||
can_cast,
|
||||
finfo,
|
||||
iinfo,
|
||||
result_type,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"astype",
|
||||
"broadcast_arrays",
|
||||
"broadcast_to",
|
||||
"can_cast",
|
||||
"finfo",
|
||||
"iinfo",
|
||||
"result_type",
|
||||
]
|
||||
|
||||
from ._dtypes import (
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
bool,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"int8",
|
||||
"int16",
|
||||
"int32",
|
||||
"int64",
|
||||
"uint8",
|
||||
"uint16",
|
||||
"uint32",
|
||||
"uint64",
|
||||
"float32",
|
||||
"float64",
|
||||
"bool",
|
||||
]
|
||||
|
||||
from ._elementwise_functions import (
|
||||
abs,
|
||||
acos,
|
||||
acosh,
|
||||
add,
|
||||
asin,
|
||||
asinh,
|
||||
atan,
|
||||
atan2,
|
||||
atanh,
|
||||
bitwise_and,
|
||||
bitwise_left_shift,
|
||||
bitwise_invert,
|
||||
bitwise_or,
|
||||
bitwise_right_shift,
|
||||
bitwise_xor,
|
||||
ceil,
|
||||
cos,
|
||||
cosh,
|
||||
divide,
|
||||
equal,
|
||||
exp,
|
||||
expm1,
|
||||
floor,
|
||||
floor_divide,
|
||||
greater,
|
||||
greater_equal,
|
||||
isfinite,
|
||||
isinf,
|
||||
isnan,
|
||||
less,
|
||||
less_equal,
|
||||
log,
|
||||
log1p,
|
||||
log2,
|
||||
log10,
|
||||
logaddexp,
|
||||
logical_and,
|
||||
logical_not,
|
||||
logical_or,
|
||||
logical_xor,
|
||||
multiply,
|
||||
negative,
|
||||
not_equal,
|
||||
positive,
|
||||
pow,
|
||||
remainder,
|
||||
round,
|
||||
sign,
|
||||
sin,
|
||||
sinh,
|
||||
square,
|
||||
sqrt,
|
||||
subtract,
|
||||
tan,
|
||||
tanh,
|
||||
trunc,
|
||||
)
|
||||
|
||||
__all__ += [
|
||||
"abs",
|
||||
"acos",
|
||||
"acosh",
|
||||
"add",
|
||||
"asin",
|
||||
"asinh",
|
||||
"atan",
|
||||
"atan2",
|
||||
"atanh",
|
||||
"bitwise_and",
|
||||
"bitwise_left_shift",
|
||||
"bitwise_invert",
|
||||
"bitwise_or",
|
||||
"bitwise_right_shift",
|
||||
"bitwise_xor",
|
||||
"ceil",
|
||||
"cos",
|
||||
"cosh",
|
||||
"divide",
|
||||
"equal",
|
||||
"exp",
|
||||
"expm1",
|
||||
"floor",
|
||||
"floor_divide",
|
||||
"greater",
|
||||
"greater_equal",
|
||||
"isfinite",
|
||||
"isinf",
|
||||
"isnan",
|
||||
"less",
|
||||
"less_equal",
|
||||
"log",
|
||||
"log1p",
|
||||
"log2",
|
||||
"log10",
|
||||
"logaddexp",
|
||||
"logical_and",
|
||||
"logical_not",
|
||||
"logical_or",
|
||||
"logical_xor",
|
||||
"multiply",
|
||||
"negative",
|
||||
"not_equal",
|
||||
"positive",
|
||||
"pow",
|
||||
"remainder",
|
||||
"round",
|
||||
"sign",
|
||||
"sin",
|
||||
"sinh",
|
||||
"square",
|
||||
"sqrt",
|
||||
"subtract",
|
||||
"tan",
|
||||
"tanh",
|
||||
"trunc",
|
||||
]
|
||||
|
||||
# linalg is an extension in the array API spec, which is a sub-namespace. Only
|
||||
# a subset of functions in it are imported into the top-level namespace.
|
||||
from . import linalg
|
||||
|
||||
__all__ += ["linalg"]
|
||||
|
||||
from .linalg import matmul, tensordot, matrix_transpose, vecdot
|
||||
|
||||
__all__ += ["matmul", "tensordot", "matrix_transpose", "vecdot"]
|
||||
|
||||
from ._manipulation_functions import (
|
||||
concat,
|
||||
expand_dims,
|
||||
flip,
|
||||
permute_dims,
|
||||
reshape,
|
||||
roll,
|
||||
squeeze,
|
||||
stack,
|
||||
)
|
||||
|
||||
__all__ += ["concat", "expand_dims", "flip", "permute_dims", "reshape", "roll", "squeeze", "stack"]
|
||||
|
||||
from ._searching_functions import argmax, argmin, nonzero, where
|
||||
|
||||
__all__ += ["argmax", "argmin", "nonzero", "where"]
|
||||
|
||||
from ._set_functions import unique_all, unique_counts, unique_inverse, unique_values
|
||||
|
||||
__all__ += ["unique_all", "unique_counts", "unique_inverse", "unique_values"]
|
||||
|
||||
from ._sorting_functions import argsort, sort
|
||||
|
||||
__all__ += ["argsort", "sort"]
|
||||
|
||||
from ._statistical_functions import max, mean, min, prod, std, sum, var
|
||||
|
||||
__all__ += ["max", "mean", "min", "prod", "std", "sum", "var"]
|
||||
|
||||
from ._utility_functions import all, any
|
||||
|
||||
__all__ += ["all", "any"]
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,6 @@
|
||||
import numpy as np
|
||||
|
||||
e = np.e
|
||||
inf = np.inf
|
||||
nan = np.nan
|
||||
pi = np.pi
|
||||
@@ -0,0 +1,351 @@
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import (
|
||||
Array,
|
||||
Device,
|
||||
Dtype,
|
||||
NestedSequence,
|
||||
SupportsBufferProtocol,
|
||||
)
|
||||
from collections.abc import Sequence
|
||||
from ._dtypes import _all_dtypes
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _check_valid_dtype(dtype):
|
||||
# Note: Only spelling dtypes as the dtype objects is supported.
|
||||
|
||||
# We use this instead of "dtype in _all_dtypes" because the dtype objects
|
||||
# define equality with the sorts of things we want to disallow.
|
||||
for d in (None,) + _all_dtypes:
|
||||
if dtype is d:
|
||||
return
|
||||
raise ValueError("dtype must be one of the supported dtypes")
|
||||
|
||||
|
||||
def asarray(
|
||||
obj: Union[
|
||||
Array,
|
||||
bool,
|
||||
int,
|
||||
float,
|
||||
NestedSequence[bool | int | float],
|
||||
SupportsBufferProtocol,
|
||||
],
|
||||
/,
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
copy: Optional[Union[bool, np._CopyMode]] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# _array_object imports in this file are inside the functions to avoid
|
||||
# circular imports
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
if copy in (False, np._CopyMode.IF_NEEDED):
|
||||
# Note: copy=False is not yet implemented in np.asarray
|
||||
raise NotImplementedError("copy=False is not yet implemented")
|
||||
if isinstance(obj, Array):
|
||||
if dtype is not None and obj.dtype != dtype:
|
||||
copy = True
|
||||
if copy in (True, np._CopyMode.ALWAYS):
|
||||
return Array._new(np.array(obj._array, copy=True, dtype=dtype))
|
||||
return obj
|
||||
if dtype is None and isinstance(obj, int) and (obj > 2 ** 64 or obj < -(2 ** 63)):
|
||||
# Give a better error message in this case. NumPy would convert this
|
||||
# to an object array. TODO: This won't handle large integers in lists.
|
||||
raise OverflowError("Integer out of bounds for array dtypes")
|
||||
res = np.asarray(obj, dtype=dtype)
|
||||
return Array._new(res)
|
||||
|
||||
|
||||
def arange(
|
||||
start: Union[int, float],
|
||||
/,
|
||||
stop: Optional[Union[int, float]] = None,
|
||||
step: Union[int, float] = 1,
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype))
|
||||
|
||||
|
||||
def empty(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.empty(shape, dtype=dtype))
|
||||
|
||||
|
||||
def empty_like(
|
||||
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.empty_like(x._array, dtype=dtype))
|
||||
|
||||
|
||||
def eye(
|
||||
n_rows: int,
|
||||
n_cols: Optional[int] = None,
|
||||
/,
|
||||
*,
|
||||
k: int = 0,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype))
|
||||
|
||||
|
||||
def from_dlpack(x: object, /) -> Array:
|
||||
from ._array_object import Array
|
||||
|
||||
return Array._new(np.from_dlpack(x))
|
||||
|
||||
|
||||
def full(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
fill_value: Union[int, float],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.full <numpy.full>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
if isinstance(fill_value, Array) and fill_value.ndim == 0:
|
||||
fill_value = fill_value._array
|
||||
res = np.full(shape, fill_value, dtype=dtype)
|
||||
if res.dtype not in _all_dtypes:
|
||||
# This will happen if the fill value is not something that NumPy
|
||||
# coerces to one of the acceptable dtypes.
|
||||
raise TypeError("Invalid input to full")
|
||||
return Array._new(res)
|
||||
|
||||
|
||||
def full_like(
|
||||
x: Array,
|
||||
/,
|
||||
fill_value: Union[int, float],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
res = np.full_like(x._array, fill_value, dtype=dtype)
|
||||
if res.dtype not in _all_dtypes:
|
||||
# This will happen if the fill value is not something that NumPy
|
||||
# coerces to one of the acceptable dtypes.
|
||||
raise TypeError("Invalid input to full_like")
|
||||
return Array._new(res)
|
||||
|
||||
|
||||
def linspace(
|
||||
start: Union[int, float],
|
||||
stop: Union[int, float],
|
||||
/,
|
||||
num: int,
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
endpoint: bool = True,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint))
|
||||
|
||||
|
||||
def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
# Note: unlike np.meshgrid, only inputs with all the same dtype are
|
||||
# allowed
|
||||
|
||||
if len({a.dtype for a in arrays}) > 1:
|
||||
raise ValueError("meshgrid inputs must all have the same dtype")
|
||||
|
||||
return [
|
||||
Array._new(array)
|
||||
for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)
|
||||
]
|
||||
|
||||
|
||||
def ones(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.ones(shape, dtype=dtype))
|
||||
|
||||
|
||||
def ones_like(
|
||||
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.ones_like(x._array, dtype=dtype))
|
||||
|
||||
|
||||
def tril(x: Array, /, *, k: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.tril <numpy.tril>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
if x.ndim < 2:
|
||||
# Note: Unlike np.tril, x must be at least 2-D
|
||||
raise ValueError("x must be at least 2-dimensional for tril")
|
||||
return Array._new(np.tril(x._array, k=k))
|
||||
|
||||
|
||||
def triu(x: Array, /, *, k: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.triu <numpy.triu>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
if x.ndim < 2:
|
||||
# Note: Unlike np.triu, x must be at least 2-D
|
||||
raise ValueError("x must be at least 2-dimensional for triu")
|
||||
return Array._new(np.triu(x._array, k=k))
|
||||
|
||||
|
||||
def zeros(
|
||||
shape: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
dtype: Optional[Dtype] = None,
|
||||
device: Optional[Device] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.zeros(shape, dtype=dtype))
|
||||
|
||||
|
||||
def zeros_like(
|
||||
x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
_check_valid_dtype(dtype)
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(f"Unsupported device {device!r}")
|
||||
return Array._new(np.zeros_like(x._array, dtype=dtype))
|
||||
@@ -0,0 +1,146 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._dtypes import _all_dtypes, _result_type
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, List, Tuple, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import Dtype
|
||||
from collections.abc import Sequence
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Note: astype is a function, not an array method as in NumPy.
|
||||
def astype(x: Array, dtype: Dtype, /, *, copy: bool = True) -> Array:
|
||||
if not copy and dtype == x.dtype:
|
||||
return x
|
||||
return Array._new(x._array.astype(dtype=dtype, copy=copy))
|
||||
|
||||
|
||||
def broadcast_arrays(*arrays: Array) -> List[Array]:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.broadcast_arrays <numpy.broadcast_arrays>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
return [
|
||||
Array._new(array) for array in np.broadcast_arrays(*[a._array for a in arrays])
|
||||
]
|
||||
|
||||
|
||||
def broadcast_to(x: Array, /, shape: Tuple[int, ...]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.broadcast_to <numpy.broadcast_to>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
from ._array_object import Array
|
||||
|
||||
return Array._new(np.broadcast_to(x._array, shape))
|
||||
|
||||
|
||||
def can_cast(from_: Union[Dtype, Array], to: Dtype, /) -> bool:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.can_cast <numpy.can_cast>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if isinstance(from_, Array):
|
||||
from_ = from_.dtype
|
||||
elif from_ not in _all_dtypes:
|
||||
raise TypeError(f"{from_=}, but should be an array_api array or dtype")
|
||||
if to not in _all_dtypes:
|
||||
raise TypeError(f"{to=}, but should be a dtype")
|
||||
# Note: We avoid np.can_cast() as it has discrepancies with the array API,
|
||||
# since NumPy allows cross-kind casting (e.g., NumPy allows bool -> int8).
|
||||
# See https://github.com/numpy/numpy/issues/20870
|
||||
try:
|
||||
# We promote `from_` and `to` together. We then check if the promoted
|
||||
# dtype is `to`, which indicates if `from_` can (up)cast to `to`.
|
||||
dtype = _result_type(from_, to)
|
||||
return to == dtype
|
||||
except TypeError:
|
||||
# _result_type() raises if the dtypes don't promote together
|
||||
return False
|
||||
|
||||
|
||||
# These are internal objects for the return types of finfo and iinfo, since
|
||||
# the NumPy versions contain extra data that isn't part of the spec.
|
||||
@dataclass
|
||||
class finfo_object:
|
||||
bits: int
|
||||
# Note: The types of the float data here are float, whereas in NumPy they
|
||||
# are scalars of the corresponding float dtype.
|
||||
eps: float
|
||||
max: float
|
||||
min: float
|
||||
smallest_normal: float
|
||||
|
||||
|
||||
@dataclass
|
||||
class iinfo_object:
|
||||
bits: int
|
||||
max: int
|
||||
min: int
|
||||
|
||||
|
||||
def finfo(type: Union[Dtype, Array], /) -> finfo_object:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.finfo <numpy.finfo>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
fi = np.finfo(type)
|
||||
# Note: The types of the float data here are float, whereas in NumPy they
|
||||
# are scalars of the corresponding float dtype.
|
||||
return finfo_object(
|
||||
fi.bits,
|
||||
float(fi.eps),
|
||||
float(fi.max),
|
||||
float(fi.min),
|
||||
float(fi.smallest_normal),
|
||||
)
|
||||
|
||||
|
||||
def iinfo(type: Union[Dtype, Array], /) -> iinfo_object:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.iinfo <numpy.iinfo>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
ii = np.iinfo(type)
|
||||
return iinfo_object(ii.bits, ii.max, ii.min)
|
||||
|
||||
|
||||
def result_type(*arrays_and_dtypes: Union[Array, Dtype]) -> Dtype:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.result_type <numpy.result_type>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: we use a custom implementation that gives only the type promotions
|
||||
# required by the spec rather than using np.result_type. NumPy implements
|
||||
# too many extra type promotions like int64 + uint64 -> float64, and does
|
||||
# value-based casting on scalar arrays.
|
||||
A = []
|
||||
for a in arrays_and_dtypes:
|
||||
if isinstance(a, Array):
|
||||
a = a.dtype
|
||||
elif isinstance(a, np.ndarray) or a not in _all_dtypes:
|
||||
raise TypeError("result_type() inputs must be array_api arrays or dtypes")
|
||||
A.append(a)
|
||||
|
||||
if len(A) == 0:
|
||||
raise ValueError("at least one array or dtype is required")
|
||||
elif len(A) == 1:
|
||||
return A[0]
|
||||
else:
|
||||
t = A[0]
|
||||
for t2 in A[1:]:
|
||||
t = _result_type(t, t2)
|
||||
return t
|
||||
@@ -0,0 +1,143 @@
|
||||
import numpy as np
|
||||
|
||||
# Note: we use dtype objects instead of dtype classes. The spec does not
|
||||
# require any behavior on dtypes other than equality.
|
||||
int8 = np.dtype("int8")
|
||||
int16 = np.dtype("int16")
|
||||
int32 = np.dtype("int32")
|
||||
int64 = np.dtype("int64")
|
||||
uint8 = np.dtype("uint8")
|
||||
uint16 = np.dtype("uint16")
|
||||
uint32 = np.dtype("uint32")
|
||||
uint64 = np.dtype("uint64")
|
||||
float32 = np.dtype("float32")
|
||||
float64 = np.dtype("float64")
|
||||
# Note: This name is changed
|
||||
bool = np.dtype("bool")
|
||||
|
||||
_all_dtypes = (
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
bool,
|
||||
)
|
||||
_boolean_dtypes = (bool,)
|
||||
_floating_dtypes = (float32, float64)
|
||||
_integer_dtypes = (int8, int16, int32, int64, uint8, uint16, uint32, uint64)
|
||||
_integer_or_boolean_dtypes = (
|
||||
bool,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
)
|
||||
_numeric_dtypes = (
|
||||
float32,
|
||||
float64,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
)
|
||||
|
||||
_dtype_categories = {
|
||||
"all": _all_dtypes,
|
||||
"numeric": _numeric_dtypes,
|
||||
"integer": _integer_dtypes,
|
||||
"integer or boolean": _integer_or_boolean_dtypes,
|
||||
"boolean": _boolean_dtypes,
|
||||
"floating-point": _floating_dtypes,
|
||||
}
|
||||
|
||||
|
||||
# Note: the spec defines a restricted type promotion table compared to NumPy.
|
||||
# In particular, cross-kind promotions like integer + float or boolean +
|
||||
# integer are not allowed, even for functions that accept both kinds.
|
||||
# Additionally, NumPy promotes signed integer + uint64 to float64, but this
|
||||
# promotion is not allowed here. To be clear, Python scalar int objects are
|
||||
# allowed to promote to floating-point dtypes, but only in array operators
|
||||
# (see Array._promote_scalar) method in _array_object.py.
|
||||
_promotion_table = {
|
||||
(int8, int8): int8,
|
||||
(int8, int16): int16,
|
||||
(int8, int32): int32,
|
||||
(int8, int64): int64,
|
||||
(int16, int8): int16,
|
||||
(int16, int16): int16,
|
||||
(int16, int32): int32,
|
||||
(int16, int64): int64,
|
||||
(int32, int8): int32,
|
||||
(int32, int16): int32,
|
||||
(int32, int32): int32,
|
||||
(int32, int64): int64,
|
||||
(int64, int8): int64,
|
||||
(int64, int16): int64,
|
||||
(int64, int32): int64,
|
||||
(int64, int64): int64,
|
||||
(uint8, uint8): uint8,
|
||||
(uint8, uint16): uint16,
|
||||
(uint8, uint32): uint32,
|
||||
(uint8, uint64): uint64,
|
||||
(uint16, uint8): uint16,
|
||||
(uint16, uint16): uint16,
|
||||
(uint16, uint32): uint32,
|
||||
(uint16, uint64): uint64,
|
||||
(uint32, uint8): uint32,
|
||||
(uint32, uint16): uint32,
|
||||
(uint32, uint32): uint32,
|
||||
(uint32, uint64): uint64,
|
||||
(uint64, uint8): uint64,
|
||||
(uint64, uint16): uint64,
|
||||
(uint64, uint32): uint64,
|
||||
(uint64, uint64): uint64,
|
||||
(int8, uint8): int16,
|
||||
(int8, uint16): int32,
|
||||
(int8, uint32): int64,
|
||||
(int16, uint8): int16,
|
||||
(int16, uint16): int32,
|
||||
(int16, uint32): int64,
|
||||
(int32, uint8): int32,
|
||||
(int32, uint16): int32,
|
||||
(int32, uint32): int64,
|
||||
(int64, uint8): int64,
|
||||
(int64, uint16): int64,
|
||||
(int64, uint32): int64,
|
||||
(uint8, int8): int16,
|
||||
(uint16, int8): int32,
|
||||
(uint32, int8): int64,
|
||||
(uint8, int16): int16,
|
||||
(uint16, int16): int32,
|
||||
(uint32, int16): int64,
|
||||
(uint8, int32): int32,
|
||||
(uint16, int32): int32,
|
||||
(uint32, int32): int64,
|
||||
(uint8, int64): int64,
|
||||
(uint16, int64): int64,
|
||||
(uint32, int64): int64,
|
||||
(float32, float32): float32,
|
||||
(float32, float64): float64,
|
||||
(float64, float32): float64,
|
||||
(float64, float64): float64,
|
||||
(bool, bool): bool,
|
||||
}
|
||||
|
||||
|
||||
def _result_type(type1, type2):
|
||||
if (type1, type2) in _promotion_table:
|
||||
return _promotion_table[type1, type2]
|
||||
raise TypeError(f"{type1} and {type2} cannot be type promoted together")
|
||||
@@ -0,0 +1,729 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._dtypes import (
|
||||
_boolean_dtypes,
|
||||
_floating_dtypes,
|
||||
_integer_dtypes,
|
||||
_integer_or_boolean_dtypes,
|
||||
_numeric_dtypes,
|
||||
_result_type,
|
||||
)
|
||||
from ._array_object import Array
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def abs(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in abs")
|
||||
return Array._new(np.abs(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def acos(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in acos")
|
||||
return Array._new(np.arccos(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def acosh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in acosh")
|
||||
return Array._new(np.arccosh(x._array))
|
||||
|
||||
|
||||
def add(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.add <numpy.add>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in add")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.add(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def asin(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in asin")
|
||||
return Array._new(np.arcsin(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def asinh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in asinh")
|
||||
return Array._new(np.arcsinh(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def atan(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in atan")
|
||||
return Array._new(np.arctan(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def atan2(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in atan2")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.arctan2(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def atanh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in atanh")
|
||||
return Array._new(np.arctanh(x._array))
|
||||
|
||||
|
||||
def bitwise_and(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if (
|
||||
x1.dtype not in _integer_or_boolean_dtypes
|
||||
or x2.dtype not in _integer_or_boolean_dtypes
|
||||
):
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_and")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.bitwise_and(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def bitwise_left_shift(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
|
||||
raise TypeError("Only integer dtypes are allowed in bitwise_left_shift")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
# Note: bitwise_left_shift is only defined for x2 nonnegative.
|
||||
if np.any(x2._array < 0):
|
||||
raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
|
||||
return Array._new(np.left_shift(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def bitwise_invert(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _integer_or_boolean_dtypes:
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert")
|
||||
return Array._new(np.invert(x._array))
|
||||
|
||||
|
||||
def bitwise_or(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if (
|
||||
x1.dtype not in _integer_or_boolean_dtypes
|
||||
or x2.dtype not in _integer_or_boolean_dtypes
|
||||
):
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_or")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.bitwise_or(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def bitwise_right_shift(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
|
||||
raise TypeError("Only integer dtypes are allowed in bitwise_right_shift")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
# Note: bitwise_right_shift is only defined for x2 nonnegative.
|
||||
if np.any(x2._array < 0):
|
||||
raise ValueError("bitwise_right_shift(x1, x2) is only defined for x2 >= 0")
|
||||
return Array._new(np.right_shift(x1._array, x2._array))
|
||||
|
||||
|
||||
def bitwise_xor(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if (
|
||||
x1.dtype not in _integer_or_boolean_dtypes
|
||||
or x2.dtype not in _integer_or_boolean_dtypes
|
||||
):
|
||||
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_xor")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.bitwise_xor(x1._array, x2._array))
|
||||
|
||||
|
||||
def ceil(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in ceil")
|
||||
if x.dtype in _integer_dtypes:
|
||||
# Note: The return dtype of ceil is the same as the input
|
||||
return x
|
||||
return Array._new(np.ceil(x._array))
|
||||
|
||||
|
||||
def cos(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in cos")
|
||||
return Array._new(np.cos(x._array))
|
||||
|
||||
|
||||
def cosh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in cosh")
|
||||
return Array._new(np.cosh(x._array))
|
||||
|
||||
|
||||
def divide(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in divide")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.divide(x1._array, x2._array))
|
||||
|
||||
|
||||
def equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def exp(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in exp")
|
||||
return Array._new(np.exp(x._array))
|
||||
|
||||
|
||||
def expm1(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in expm1")
|
||||
return Array._new(np.expm1(x._array))
|
||||
|
||||
|
||||
def floor(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in floor")
|
||||
if x.dtype in _integer_dtypes:
|
||||
# Note: The return dtype of floor is the same as the input
|
||||
return x
|
||||
return Array._new(np.floor(x._array))
|
||||
|
||||
|
||||
def floor_divide(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in floor_divide")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.floor_divide(x1._array, x2._array))
|
||||
|
||||
|
||||
def greater(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in greater")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.greater(x1._array, x2._array))
|
||||
|
||||
|
||||
def greater_equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in greater_equal")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.greater_equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def isfinite(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in isfinite")
|
||||
return Array._new(np.isfinite(x._array))
|
||||
|
||||
|
||||
def isinf(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in isinf")
|
||||
return Array._new(np.isinf(x._array))
|
||||
|
||||
|
||||
def isnan(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in isnan")
|
||||
return Array._new(np.isnan(x._array))
|
||||
|
||||
|
||||
def less(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.less <numpy.less>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in less")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.less(x1._array, x2._array))
|
||||
|
||||
|
||||
def less_equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in less_equal")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.less_equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def log(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log <numpy.log>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log")
|
||||
return Array._new(np.log(x._array))
|
||||
|
||||
|
||||
def log1p(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log1p")
|
||||
return Array._new(np.log1p(x._array))
|
||||
|
||||
|
||||
def log2(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log2")
|
||||
return Array._new(np.log2(x._array))
|
||||
|
||||
|
||||
def log10(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in log10")
|
||||
return Array._new(np.log10(x._array))
|
||||
|
||||
|
||||
def logaddexp(x1: Array, x2: Array) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in logaddexp")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logaddexp(x1._array, x2._array))
|
||||
|
||||
|
||||
def logical_and(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_and")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logical_and(x1._array, x2._array))
|
||||
|
||||
|
||||
def logical_not(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_not")
|
||||
return Array._new(np.logical_not(x._array))
|
||||
|
||||
|
||||
def logical_or(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_or")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logical_or(x1._array, x2._array))
|
||||
|
||||
|
||||
def logical_xor(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
|
||||
raise TypeError("Only boolean dtypes are allowed in logical_xor")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.logical_xor(x1._array, x2._array))
|
||||
|
||||
|
||||
def multiply(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in multiply")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.multiply(x1._array, x2._array))
|
||||
|
||||
|
||||
def negative(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in negative")
|
||||
return Array._new(np.negative(x._array))
|
||||
|
||||
|
||||
def not_equal(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.not_equal(x1._array, x2._array))
|
||||
|
||||
|
||||
def positive(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in positive")
|
||||
return Array._new(np.positive(x._array))
|
||||
|
||||
|
||||
# Note: the function name is different here
|
||||
def pow(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.power <numpy.power>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in pow")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.power(x1._array, x2._array))
|
||||
|
||||
|
||||
def remainder(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in remainder")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.remainder(x1._array, x2._array))
|
||||
|
||||
|
||||
def round(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.round <numpy.round>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in round")
|
||||
return Array._new(np.round(x._array))
|
||||
|
||||
|
||||
def sign(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in sign")
|
||||
return Array._new(np.sign(x._array))
|
||||
|
||||
|
||||
def sin(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in sin")
|
||||
return Array._new(np.sin(x._array))
|
||||
|
||||
|
||||
def sinh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in sinh")
|
||||
return Array._new(np.sinh(x._array))
|
||||
|
||||
|
||||
def square(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.square <numpy.square>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in square")
|
||||
return Array._new(np.square(x._array))
|
||||
|
||||
|
||||
def sqrt(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in sqrt")
|
||||
return Array._new(np.sqrt(x._array))
|
||||
|
||||
|
||||
def subtract(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in subtract")
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.subtract(x1._array, x2._array))
|
||||
|
||||
|
||||
def tan(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in tan")
|
||||
return Array._new(np.tan(x._array))
|
||||
|
||||
|
||||
def tanh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in tanh")
|
||||
return Array._new(np.tanh(x._array))
|
||||
|
||||
|
||||
def trunc(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in trunc")
|
||||
if x.dtype in _integer_dtypes:
|
||||
# Note: The return dtype of trunc is the same as the input
|
||||
return x
|
||||
return Array._new(np.trunc(x._array))
|
||||
@@ -0,0 +1,98 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._data_type_functions import result_type
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Note: the function name is different here
|
||||
def concat(
|
||||
arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: Optional[int] = 0
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.concatenate <numpy.concatenate>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: Casting rules here are different from the np.concatenate default
|
||||
# (no for scalars with axis=None, no cross-kind casting)
|
||||
dtype = result_type(*arrays)
|
||||
arrays = tuple(a._array for a in arrays)
|
||||
return Array._new(np.concatenate(arrays, axis=axis, dtype=dtype))
|
||||
|
||||
|
||||
def expand_dims(x: Array, /, *, axis: int) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.expand_dims <numpy.expand_dims>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.expand_dims(x._array, axis))
|
||||
|
||||
|
||||
def flip(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.flip <numpy.flip>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.flip(x._array, axis=axis))
|
||||
|
||||
|
||||
# Note: The function name is different here (see also matrix_transpose).
|
||||
# Unlike transpose(), the axes argument is required.
|
||||
def permute_dims(x: Array, /, axes: Tuple[int, ...]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.transpose(x._array, axes))
|
||||
|
||||
|
||||
# Note: the optional argument is called 'shape', not 'newshape'
|
||||
def reshape(x: Array, /, shape: Tuple[int, ...]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.reshape <numpy.reshape>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.reshape(x._array, shape))
|
||||
|
||||
|
||||
def roll(
|
||||
x: Array,
|
||||
/,
|
||||
shift: Union[int, Tuple[int, ...]],
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.roll <numpy.roll>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.roll(x._array, shift, axis=axis))
|
||||
|
||||
|
||||
def squeeze(x: Array, /, axis: Union[int, Tuple[int, ...]]) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.squeeze <numpy.squeeze>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.squeeze(x._array, axis=axis))
|
||||
|
||||
|
||||
def stack(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.stack <numpy.stack>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
result_type(*arrays)
|
||||
arrays = tuple(a._array for a in arrays)
|
||||
return Array._new(np.stack(arrays, axis=axis))
|
||||
@@ -0,0 +1,47 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
from ._dtypes import _result_type
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def argmax(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.argmax <numpy.argmax>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.asarray(np.argmax(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
||||
|
||||
def argmin(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.argmin <numpy.argmin>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.asarray(np.argmin(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
||||
|
||||
def nonzero(x: Array, /) -> Tuple[Array, ...]:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.nonzero <numpy.nonzero>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return tuple(Array._new(i) for i in np.nonzero(x._array))
|
||||
|
||||
|
||||
def where(condition: Array, x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.where <numpy.where>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Call result type here just to raise on disallowed type combinations
|
||||
_result_type(x1.dtype, x2.dtype)
|
||||
x1, x2 = Array._normalize_two_args(x1, x2)
|
||||
return Array._new(np.where(condition._array, x1._array, x2._array))
|
||||
@@ -0,0 +1,106 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
|
||||
from typing import NamedTuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Note: np.unique() is split into four functions in the array API:
|
||||
# unique_all, unique_counts, unique_inverse, and unique_values (this is done
|
||||
# to remove polymorphic return types).
|
||||
|
||||
# Note: The various unique() functions are supposed to return multiple NaNs.
|
||||
# This does not match the NumPy behavior, however, this is currently left as a
|
||||
# TODO in this implementation as this behavior may be reverted in np.unique().
|
||||
# See https://github.com/numpy/numpy/issues/20326.
|
||||
|
||||
# Note: The functions here return a namedtuple (np.unique() returns a normal
|
||||
# tuple).
|
||||
|
||||
class UniqueAllResult(NamedTuple):
|
||||
values: Array
|
||||
indices: Array
|
||||
inverse_indices: Array
|
||||
counts: Array
|
||||
|
||||
|
||||
class UniqueCountsResult(NamedTuple):
|
||||
values: Array
|
||||
counts: Array
|
||||
|
||||
|
||||
class UniqueInverseResult(NamedTuple):
|
||||
values: Array
|
||||
inverse_indices: Array
|
||||
|
||||
|
||||
def unique_all(x: Array, /) -> UniqueAllResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
values, indices, inverse_indices, counts = np.unique(
|
||||
x._array,
|
||||
return_counts=True,
|
||||
return_index=True,
|
||||
return_inverse=True,
|
||||
equal_nan=False,
|
||||
)
|
||||
# np.unique() flattens inverse indices, but they need to share x's shape
|
||||
# See https://github.com/numpy/numpy/issues/20638
|
||||
inverse_indices = inverse_indices.reshape(x.shape)
|
||||
return UniqueAllResult(
|
||||
Array._new(values),
|
||||
Array._new(indices),
|
||||
Array._new(inverse_indices),
|
||||
Array._new(counts),
|
||||
)
|
||||
|
||||
|
||||
def unique_counts(x: Array, /) -> UniqueCountsResult:
|
||||
res = np.unique(
|
||||
x._array,
|
||||
return_counts=True,
|
||||
return_index=False,
|
||||
return_inverse=False,
|
||||
equal_nan=False,
|
||||
)
|
||||
|
||||
return UniqueCountsResult(*[Array._new(i) for i in res])
|
||||
|
||||
|
||||
def unique_inverse(x: Array, /) -> UniqueInverseResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
values, inverse_indices = np.unique(
|
||||
x._array,
|
||||
return_counts=False,
|
||||
return_index=False,
|
||||
return_inverse=True,
|
||||
equal_nan=False,
|
||||
)
|
||||
# np.unique() flattens inverse indices, but they need to share x's shape
|
||||
# See https://github.com/numpy/numpy/issues/20638
|
||||
inverse_indices = inverse_indices.reshape(x.shape)
|
||||
return UniqueInverseResult(Array._new(values), Array._new(inverse_indices))
|
||||
|
||||
|
||||
def unique_values(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
res = np.unique(
|
||||
x._array,
|
||||
return_counts=False,
|
||||
return_index=False,
|
||||
return_inverse=False,
|
||||
equal_nan=False,
|
||||
)
|
||||
return Array._new(res)
|
||||
@@ -0,0 +1,49 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Note: the descending keyword argument is new in this function
|
||||
def argsort(
|
||||
x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.argsort <numpy.argsort>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: this keyword argument is different, and the default is different.
|
||||
kind = "stable" if stable else "quicksort"
|
||||
if not descending:
|
||||
res = np.argsort(x._array, axis=axis, kind=kind)
|
||||
else:
|
||||
# As NumPy has no native descending sort, we imitate it here. Note that
|
||||
# simply flipping the results of np.argsort(x._array, ...) would not
|
||||
# respect the relative order like it would in native descending sorts.
|
||||
res = np.flip(
|
||||
np.argsort(np.flip(x._array, axis=axis), axis=axis, kind=kind),
|
||||
axis=axis,
|
||||
)
|
||||
# Rely on flip()/argsort() to validate axis
|
||||
normalised_axis = axis if axis >= 0 else x.ndim + axis
|
||||
max_i = x.shape[normalised_axis] - 1
|
||||
res = max_i - res
|
||||
return Array._new(res)
|
||||
|
||||
# Note: the descending keyword argument is new in this function
|
||||
def sort(
|
||||
x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.sort <numpy.sort>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: this keyword argument is different, and the default is different.
|
||||
kind = "stable" if stable else "quicksort"
|
||||
res = np.sort(x._array, axis=axis, kind=kind)
|
||||
if descending:
|
||||
res = np.flip(res, axis=axis)
|
||||
return Array._new(res)
|
||||
@@ -0,0 +1,115 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._dtypes import (
|
||||
_floating_dtypes,
|
||||
_numeric_dtypes,
|
||||
)
|
||||
from ._array_object import Array
|
||||
from ._creation_functions import asarray
|
||||
from ._dtypes import float32, float64
|
||||
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import Dtype
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def max(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in max")
|
||||
return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def mean(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in mean")
|
||||
return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def min(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in min")
|
||||
return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def prod(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
dtype: Optional[Dtype] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in prod")
|
||||
# Note: sum() and prod() always upcast float32 to float64 for dtype=None
|
||||
# We need to do so here before computing the product to avoid overflow
|
||||
if dtype is None and x.dtype == float32:
|
||||
dtype = float64
|
||||
return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
|
||||
|
||||
|
||||
def std(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
correction: Union[int, float] = 0.0,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
# Note: the keyword argument correction is different here
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in std")
|
||||
return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
|
||||
|
||||
|
||||
def sum(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
dtype: Optional[Dtype] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError("Only numeric dtypes are allowed in sum")
|
||||
# Note: sum() and prod() always upcast integers to (u)int64 and float32 to
|
||||
# float64 for dtype=None. `np.sum` does that too for integers, but not for
|
||||
# float32, so we need to special-case it here
|
||||
if dtype is None and x.dtype == float32:
|
||||
dtype = float64
|
||||
return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
|
||||
|
||||
|
||||
def var(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
correction: Union[int, float] = 0.0,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
# Note: the keyword argument correction is different here
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError("Only floating-point dtypes are allowed in var")
|
||||
return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))
|
||||
@@ -0,0 +1,74 @@
|
||||
"""
|
||||
This file defines the types for type annotations.
|
||||
|
||||
These names aren't part of the module namespace, but they are used in the
|
||||
annotations in the function signatures. The functions in the module are only
|
||||
valid for inputs that match the given type annotations.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
__all__ = [
|
||||
"Array",
|
||||
"Device",
|
||||
"Dtype",
|
||||
"SupportsDLPack",
|
||||
"SupportsBufferProtocol",
|
||||
"PyCapsule",
|
||||
]
|
||||
|
||||
import sys
|
||||
from typing import (
|
||||
Any,
|
||||
Literal,
|
||||
Sequence,
|
||||
Type,
|
||||
Union,
|
||||
TYPE_CHECKING,
|
||||
TypeVar,
|
||||
Protocol,
|
||||
)
|
||||
|
||||
from ._array_object import Array
|
||||
from numpy import (
|
||||
dtype,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
)
|
||||
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
|
||||
class NestedSequence(Protocol[_T_co]):
|
||||
def __getitem__(self, key: int, /) -> _T_co | NestedSequence[_T_co]: ...
|
||||
def __len__(self, /) -> int: ...
|
||||
|
||||
Device = Literal["cpu"]
|
||||
if TYPE_CHECKING or sys.version_info >= (3, 9):
|
||||
Dtype = dtype[Union[
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
]]
|
||||
else:
|
||||
Dtype = dtype
|
||||
|
||||
SupportsBufferProtocol = Any
|
||||
PyCapsule = Any
|
||||
|
||||
class SupportsDLPack(Protocol):
|
||||
def __dlpack__(self, /, *, stream: None = ...) -> PyCapsule: ...
|
||||
@@ -0,0 +1,37 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._array_object import Array
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def all(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.all <numpy.all>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.asarray(np.all(x._array, axis=axis, keepdims=keepdims)))
|
||||
|
||||
|
||||
def any(
|
||||
x: Array,
|
||||
/,
|
||||
*,
|
||||
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
keepdims: bool = False,
|
||||
) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.any <numpy.any>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
return Array._new(np.asarray(np.any(x._array, axis=axis, keepdims=keepdims)))
|
||||
@@ -0,0 +1,446 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from ._dtypes import _floating_dtypes, _numeric_dtypes
|
||||
from ._manipulation_functions import reshape
|
||||
from ._array_object import Array
|
||||
|
||||
from ..core.numeric import normalize_axis_tuple
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
if TYPE_CHECKING:
|
||||
from ._typing import Literal, Optional, Sequence, Tuple, Union
|
||||
|
||||
from typing import NamedTuple
|
||||
|
||||
import numpy.linalg
|
||||
import numpy as np
|
||||
|
||||
class EighResult(NamedTuple):
|
||||
eigenvalues: Array
|
||||
eigenvectors: Array
|
||||
|
||||
class QRResult(NamedTuple):
|
||||
Q: Array
|
||||
R: Array
|
||||
|
||||
class SlogdetResult(NamedTuple):
|
||||
sign: Array
|
||||
logabsdet: Array
|
||||
|
||||
class SVDResult(NamedTuple):
|
||||
U: Array
|
||||
S: Array
|
||||
Vh: Array
|
||||
|
||||
# Note: the inclusion of the upper keyword is different from
|
||||
# np.linalg.cholesky, which does not have it.
|
||||
def cholesky(x: Array, /, *, upper: bool = False) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.cholesky.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in cholesky')
|
||||
L = np.linalg.cholesky(x._array)
|
||||
if upper:
|
||||
return Array._new(L).mT
|
||||
return Array._new(L)
|
||||
|
||||
# Note: cross is the numpy top-level namespace, not np.linalg
|
||||
def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in cross')
|
||||
# Note: this is different from np.cross(), which broadcasts
|
||||
if x1.shape != x2.shape:
|
||||
raise ValueError('x1 and x2 must have the same shape')
|
||||
if x1.ndim == 0:
|
||||
raise ValueError('cross() requires arrays of dimension at least 1')
|
||||
# Note: this is different from np.cross(), which allows dimension 2
|
||||
if x1.shape[axis] != 3:
|
||||
raise ValueError('cross() dimension must equal 3')
|
||||
return Array._new(np.cross(x1._array, x2._array, axis=axis))
|
||||
|
||||
def det(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.det.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in det')
|
||||
return Array._new(np.linalg.det(x._array))
|
||||
|
||||
# Note: diagonal is the numpy top-level namespace, not np.linalg
|
||||
def diagonal(x: Array, /, *, offset: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: diagonal always operates on the last two axes, whereas np.diagonal
|
||||
# operates on the first two axes by default
|
||||
return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))
|
||||
|
||||
|
||||
def eigh(x: Array, /) -> EighResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.eigh.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in eigh')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.eigh, which only returns a tuple.
|
||||
return EighResult(*map(Array._new, np.linalg.eigh(x._array)))
|
||||
|
||||
|
||||
def eigvalsh(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.eigvalsh.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in eigvalsh')
|
||||
|
||||
return Array._new(np.linalg.eigvalsh(x._array))
|
||||
|
||||
def inv(x: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.inv.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in inv')
|
||||
|
||||
return Array._new(np.linalg.inv(x._array))
|
||||
|
||||
|
||||
# Note: matmul is the numpy top-level namespace but not in np.linalg
|
||||
def matmul(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to numeric dtypes only is different from
|
||||
# np.matmul.
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in matmul')
|
||||
|
||||
return Array._new(np.matmul(x1._array, x2._array))
|
||||
|
||||
|
||||
# Note: the name here is different from norm(). The array API norm is split
|
||||
# into matrix_norm and vector_norm().
|
||||
|
||||
# The type for ord should be Optional[Union[int, float, Literal[np.inf,
|
||||
# -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
|
||||
# literals.
|
||||
def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.norm.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in matrix_norm')
|
||||
|
||||
return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))
|
||||
|
||||
|
||||
def matrix_power(x: Array, n: int, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.matrix_power.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')
|
||||
|
||||
# np.matrix_power already checks if n is an integer
|
||||
return Array._new(np.linalg.matrix_power(x._array, n))
|
||||
|
||||
# Note: the keyword argument name rtol is different from np.linalg.matrix_rank
|
||||
def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: this is different from np.linalg.matrix_rank, which supports 1
|
||||
# dimensional arrays.
|
||||
if x.ndim < 2:
|
||||
raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
|
||||
S = np.linalg.svd(x._array, compute_uv=False)
|
||||
if rtol is None:
|
||||
tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
|
||||
else:
|
||||
if isinstance(rtol, Array):
|
||||
rtol = rtol._array
|
||||
# Note: this is different from np.linalg.matrix_rank, which does not multiply
|
||||
# the tolerance by the largest singular value.
|
||||
tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
|
||||
return Array._new(np.count_nonzero(S > tol, axis=-1))
|
||||
|
||||
|
||||
# Note: this function is new in the array API spec. Unlike transpose, it only
|
||||
# transposes the last two axes.
|
||||
def matrix_transpose(x: Array, /) -> Array:
|
||||
if x.ndim < 2:
|
||||
raise ValueError("x must be at least 2-dimensional for matrix_transpose")
|
||||
return Array._new(np.swapaxes(x._array, -1, -2))
|
||||
|
||||
# Note: outer is the numpy top-level namespace, not np.linalg
|
||||
def outer(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to numeric dtypes only is different from
|
||||
# np.outer.
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in outer')
|
||||
|
||||
# Note: the restriction to only 1-dim arrays is different from np.outer
|
||||
if x1.ndim != 1 or x2.ndim != 1:
|
||||
raise ValueError('The input arrays to outer must be 1-dimensional')
|
||||
|
||||
return Array._new(np.outer(x1._array, x2._array))
|
||||
|
||||
# Note: the keyword argument name rtol is different from np.linalg.pinv
|
||||
def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.pinv.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in pinv')
|
||||
|
||||
# Note: this is different from np.linalg.pinv, which does not multiply the
|
||||
# default tolerance by max(M, N).
|
||||
if rtol is None:
|
||||
rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
|
||||
return Array._new(np.linalg.pinv(x._array, rcond=rtol))
|
||||
|
||||
def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.qr.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in qr')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.linalg.qr, which only returns a tuple.
|
||||
return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))
|
||||
|
||||
def slogdet(x: Array, /) -> SlogdetResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.slogdet.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in slogdet')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.linalg.slogdet, which only returns a tuple.
|
||||
return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))
|
||||
|
||||
# Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
|
||||
# vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
|
||||
# of matrices. The np.linalg.solve behavior of allowing stacks of both
|
||||
# matrices and vectors is ambiguous c.f.
|
||||
# https://github.com/numpy/numpy/issues/15349 and
|
||||
# https://github.com/data-apis/array-api/issues/285.
|
||||
|
||||
# To workaround this, the below is the code from np.linalg.solve except
|
||||
# only calling solve1 in the exactly 1D case.
|
||||
def _solve(a, b):
|
||||
from ..linalg.linalg import (_makearray, _assert_stacked_2d,
|
||||
_assert_stacked_square, _commonType,
|
||||
isComplexType, get_linalg_error_extobj,
|
||||
_raise_linalgerror_singular)
|
||||
from ..linalg import _umath_linalg
|
||||
|
||||
a, _ = _makearray(a)
|
||||
_assert_stacked_2d(a)
|
||||
_assert_stacked_square(a)
|
||||
b, wrap = _makearray(b)
|
||||
t, result_t = _commonType(a, b)
|
||||
|
||||
# This part is different from np.linalg.solve
|
||||
if b.ndim == 1:
|
||||
gufunc = _umath_linalg.solve1
|
||||
else:
|
||||
gufunc = _umath_linalg.solve
|
||||
|
||||
# This does nothing currently but is left in because it will be relevant
|
||||
# when complex dtype support is added to the spec in 2022.
|
||||
signature = 'DD->D' if isComplexType(t) else 'dd->d'
|
||||
extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
|
||||
r = gufunc(a, b, signature=signature, extobj=extobj)
|
||||
|
||||
return wrap(r.astype(result_t, copy=False))
|
||||
|
||||
def solve(x1: Array, x2: Array, /) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.solve.
|
||||
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in solve')
|
||||
|
||||
return Array._new(_solve(x1._array, x2._array))
|
||||
|
||||
def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.svd.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in svd')
|
||||
|
||||
# Note: the return type here is a namedtuple, which is different from
|
||||
# np.svd, which only returns a tuple.
|
||||
return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))
|
||||
|
||||
# Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
|
||||
# np.linalg.svd(compute_uv=False).
|
||||
def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in svdvals')
|
||||
return Array._new(np.linalg.svd(x._array, compute_uv=False))
|
||||
|
||||
# Note: tensordot is the numpy top-level namespace but not in np.linalg
|
||||
|
||||
# Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
|
||||
def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
|
||||
# Note: the restriction to numeric dtypes only is different from
|
||||
# np.tensordot.
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in tensordot')
|
||||
|
||||
return Array._new(np.tensordot(x1._array, x2._array, axes=axes))
|
||||
|
||||
# Note: trace is the numpy top-level namespace, not np.linalg
|
||||
def trace(x: Array, /, *, offset: int = 0) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
if x.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in trace')
|
||||
# Note: trace always operates on the last two axes, whereas np.trace
|
||||
# operates on the first two axes by default
|
||||
return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1)))
|
||||
|
||||
# Note: vecdot is not in NumPy
|
||||
def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
|
||||
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
|
||||
raise TypeError('Only numeric dtypes are allowed in vecdot')
|
||||
ndim = max(x1.ndim, x2.ndim)
|
||||
x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
|
||||
x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
|
||||
if x1_shape[axis] != x2_shape[axis]:
|
||||
raise ValueError("x1 and x2 must have the same size along the given axis")
|
||||
|
||||
x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
|
||||
x1_ = np.moveaxis(x1_, axis, -1)
|
||||
x2_ = np.moveaxis(x2_, axis, -1)
|
||||
|
||||
res = x1_[..., None, :] @ x2_[..., None]
|
||||
return Array._new(res[..., 0, 0])
|
||||
|
||||
|
||||
# Note: the name here is different from norm(). The array API norm is split
|
||||
# into matrix_norm and vector_norm().
|
||||
|
||||
# The type for ord should be Optional[Union[int, float, Literal[np.inf,
|
||||
# -np.inf]]] but Literal does not support floating-point literals.
|
||||
def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
|
||||
"""
|
||||
Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
|
||||
|
||||
See its docstring for more information.
|
||||
"""
|
||||
# Note: the restriction to floating-point dtypes only is different from
|
||||
# np.linalg.norm.
|
||||
if x.dtype not in _floating_dtypes:
|
||||
raise TypeError('Only floating-point dtypes are allowed in norm')
|
||||
|
||||
# np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
|
||||
# when axis=None and the input is 2-D, so to force a vector norm, we make
|
||||
# it so the input is 1-D (for axis=None), or reshape so that norm is done
|
||||
# on a single dimension.
|
||||
a = x._array
|
||||
if axis is None:
|
||||
# Note: np.linalg.norm() doesn't handle 0-D arrays
|
||||
a = a.ravel()
|
||||
_axis = 0
|
||||
elif isinstance(axis, tuple):
|
||||
# Note: The axis argument supports any number of axes, whereas
|
||||
# np.linalg.norm() only supports a single axis for vector norm.
|
||||
normalized_axis = normalize_axis_tuple(axis, x.ndim)
|
||||
rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
|
||||
newshape = axis + rest
|
||||
a = np.transpose(a, newshape).reshape(
|
||||
(np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
|
||||
_axis = 0
|
||||
else:
|
||||
_axis = axis
|
||||
|
||||
res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))
|
||||
|
||||
if keepdims:
|
||||
# We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
|
||||
# above to avoid matrix norm logic.
|
||||
shape = list(x.shape)
|
||||
_axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
|
||||
for i in _axis:
|
||||
shape[i] = 1
|
||||
res = reshape(res, tuple(shape))
|
||||
|
||||
return res
|
||||
|
||||
__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']
|
||||
@@ -0,0 +1,12 @@
|
||||
def configuration(parent_package="", top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
|
||||
config = Configuration("array_api", parent_package, top_path)
|
||||
config.add_subpackage("tests")
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from numpy.distutils.core import setup
|
||||
|
||||
setup(configuration=configuration)
|
||||
@@ -0,0 +1,7 @@
|
||||
"""
|
||||
Tests for the array API namespace.
|
||||
|
||||
Note, full compliance with the array API can be tested with the official array API test
|
||||
suite https://github.com/data-apis/array-api-tests. This test suite primarily
|
||||
focuses on those things that are not tested by the official test suite.
|
||||
"""
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,375 @@
|
||||
import operator
|
||||
|
||||
from numpy.testing import assert_raises
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from .. import ones, asarray, reshape, result_type, all, equal
|
||||
from .._array_object import Array
|
||||
from .._dtypes import (
|
||||
_all_dtypes,
|
||||
_boolean_dtypes,
|
||||
_floating_dtypes,
|
||||
_integer_dtypes,
|
||||
_integer_or_boolean_dtypes,
|
||||
_numeric_dtypes,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint64,
|
||||
bool as bool_,
|
||||
)
|
||||
|
||||
|
||||
def test_validate_index():
|
||||
# The indexing tests in the official array API test suite test that the
|
||||
# array object correctly handles the subset of indices that are required
|
||||
# by the spec. But the NumPy array API implementation specifically
|
||||
# disallows any index not required by the spec, via Array._validate_index.
|
||||
# This test focuses on testing that non-valid indices are correctly
|
||||
# rejected. See
|
||||
# https://data-apis.org/array-api/latest/API_specification/indexing.html
|
||||
# and the docstring of Array._validate_index for the exact indexing
|
||||
# behavior that should be allowed. This does not test indices that are
|
||||
# already invalid in NumPy itself because Array will generally just pass
|
||||
# such indices directly to the underlying np.ndarray.
|
||||
|
||||
a = ones((3, 4))
|
||||
|
||||
# Out of bounds slices are not allowed
|
||||
assert_raises(IndexError, lambda: a[:4])
|
||||
assert_raises(IndexError, lambda: a[:-4])
|
||||
assert_raises(IndexError, lambda: a[:3:-1])
|
||||
assert_raises(IndexError, lambda: a[:-5:-1])
|
||||
assert_raises(IndexError, lambda: a[4:])
|
||||
assert_raises(IndexError, lambda: a[-4:])
|
||||
assert_raises(IndexError, lambda: a[4::-1])
|
||||
assert_raises(IndexError, lambda: a[-4::-1])
|
||||
|
||||
assert_raises(IndexError, lambda: a[...,:5])
|
||||
assert_raises(IndexError, lambda: a[...,:-5])
|
||||
assert_raises(IndexError, lambda: a[...,:5:-1])
|
||||
assert_raises(IndexError, lambda: a[...,:-6:-1])
|
||||
assert_raises(IndexError, lambda: a[...,5:])
|
||||
assert_raises(IndexError, lambda: a[...,-5:])
|
||||
assert_raises(IndexError, lambda: a[...,5::-1])
|
||||
assert_raises(IndexError, lambda: a[...,-5::-1])
|
||||
|
||||
# Boolean indices cannot be part of a larger tuple index
|
||||
assert_raises(IndexError, lambda: a[a[:,0]==1,0])
|
||||
assert_raises(IndexError, lambda: a[a[:,0]==1,...])
|
||||
assert_raises(IndexError, lambda: a[..., a[0]==1])
|
||||
assert_raises(IndexError, lambda: a[[True, True, True]])
|
||||
assert_raises(IndexError, lambda: a[(True, True, True),])
|
||||
|
||||
# Integer array indices are not allowed (except for 0-D)
|
||||
idx = asarray([[0, 1]])
|
||||
assert_raises(IndexError, lambda: a[idx])
|
||||
assert_raises(IndexError, lambda: a[idx,])
|
||||
assert_raises(IndexError, lambda: a[[0, 1]])
|
||||
assert_raises(IndexError, lambda: a[(0, 1), (0, 1)])
|
||||
assert_raises(IndexError, lambda: a[[0, 1]])
|
||||
assert_raises(IndexError, lambda: a[np.array([[0, 1]])])
|
||||
|
||||
# Multiaxis indices must contain exactly as many indices as dimensions
|
||||
assert_raises(IndexError, lambda: a[()])
|
||||
assert_raises(IndexError, lambda: a[0,])
|
||||
assert_raises(IndexError, lambda: a[0])
|
||||
assert_raises(IndexError, lambda: a[:])
|
||||
|
||||
def test_operators():
|
||||
# For every operator, we test that it works for the required type
|
||||
# combinations and raises TypeError otherwise
|
||||
binary_op_dtypes = {
|
||||
"__add__": "numeric",
|
||||
"__and__": "integer_or_boolean",
|
||||
"__eq__": "all",
|
||||
"__floordiv__": "numeric",
|
||||
"__ge__": "numeric",
|
||||
"__gt__": "numeric",
|
||||
"__le__": "numeric",
|
||||
"__lshift__": "integer",
|
||||
"__lt__": "numeric",
|
||||
"__mod__": "numeric",
|
||||
"__mul__": "numeric",
|
||||
"__ne__": "all",
|
||||
"__or__": "integer_or_boolean",
|
||||
"__pow__": "numeric",
|
||||
"__rshift__": "integer",
|
||||
"__sub__": "numeric",
|
||||
"__truediv__": "floating",
|
||||
"__xor__": "integer_or_boolean",
|
||||
}
|
||||
|
||||
# Recompute each time because of in-place ops
|
||||
def _array_vals():
|
||||
for d in _integer_dtypes:
|
||||
yield asarray(1, dtype=d)
|
||||
for d in _boolean_dtypes:
|
||||
yield asarray(False, dtype=d)
|
||||
for d in _floating_dtypes:
|
||||
yield asarray(1.0, dtype=d)
|
||||
|
||||
for op, dtypes in binary_op_dtypes.items():
|
||||
ops = [op]
|
||||
if op not in ["__eq__", "__ne__", "__le__", "__ge__", "__lt__", "__gt__"]:
|
||||
rop = "__r" + op[2:]
|
||||
iop = "__i" + op[2:]
|
||||
ops += [rop, iop]
|
||||
for s in [1, 1.0, False]:
|
||||
for _op in ops:
|
||||
for a in _array_vals():
|
||||
# Test array op scalar. From the spec, the following combinations
|
||||
# are supported:
|
||||
|
||||
# - Python bool for a bool array dtype,
|
||||
# - a Python int within the bounds of the given dtype for integer array dtypes,
|
||||
# - a Python int or float for floating-point array dtypes
|
||||
|
||||
# We do not do bounds checking for int scalars, but rather use the default
|
||||
# NumPy behavior for casting in that case.
|
||||
|
||||
if ((dtypes == "all"
|
||||
or dtypes == "numeric" and a.dtype in _numeric_dtypes
|
||||
or dtypes == "integer" and a.dtype in _integer_dtypes
|
||||
or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes
|
||||
or dtypes == "boolean" and a.dtype in _boolean_dtypes
|
||||
or dtypes == "floating" and a.dtype in _floating_dtypes
|
||||
)
|
||||
# bool is a subtype of int, which is why we avoid
|
||||
# isinstance here.
|
||||
and (a.dtype in _boolean_dtypes and type(s) == bool
|
||||
or a.dtype in _integer_dtypes and type(s) == int
|
||||
or a.dtype in _floating_dtypes and type(s) in [float, int]
|
||||
)):
|
||||
# Only test for no error
|
||||
getattr(a, _op)(s)
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(a, _op)(s))
|
||||
|
||||
# Test array op array.
|
||||
for _op in ops:
|
||||
for x in _array_vals():
|
||||
for y in _array_vals():
|
||||
# See the promotion table in NEP 47 or the array
|
||||
# API spec page on type promotion. Mixed kind
|
||||
# promotion is not defined.
|
||||
if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
|
||||
or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
|
||||
or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
|
||||
or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
|
||||
or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes
|
||||
or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes
|
||||
or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
|
||||
or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
|
||||
):
|
||||
assert_raises(TypeError, lambda: getattr(x, _op)(y))
|
||||
# Ensure in-place operators only promote to the same dtype as the left operand.
|
||||
elif (
|
||||
_op.startswith("__i")
|
||||
and result_type(x.dtype, y.dtype) != x.dtype
|
||||
):
|
||||
assert_raises(TypeError, lambda: getattr(x, _op)(y))
|
||||
# Ensure only those dtypes that are required for every operator are allowed.
|
||||
elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
|
||||
or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
|
||||
or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
|
||||
or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _numeric_dtypes
|
||||
or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
|
||||
or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes)
|
||||
or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
|
||||
or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes
|
||||
):
|
||||
getattr(x, _op)(y)
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(x, _op)(y))
|
||||
|
||||
unary_op_dtypes = {
|
||||
"__abs__": "numeric",
|
||||
"__invert__": "integer_or_boolean",
|
||||
"__neg__": "numeric",
|
||||
"__pos__": "numeric",
|
||||
}
|
||||
for op, dtypes in unary_op_dtypes.items():
|
||||
for a in _array_vals():
|
||||
if (
|
||||
dtypes == "numeric"
|
||||
and a.dtype in _numeric_dtypes
|
||||
or dtypes == "integer_or_boolean"
|
||||
and a.dtype in _integer_or_boolean_dtypes
|
||||
):
|
||||
# Only test for no error
|
||||
getattr(a, op)()
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(a, op)())
|
||||
|
||||
# Finally, matmul() must be tested separately, because it works a bit
|
||||
# different from the other operations.
|
||||
def _matmul_array_vals():
|
||||
for a in _array_vals():
|
||||
yield a
|
||||
for d in _all_dtypes:
|
||||
yield ones((3, 4), dtype=d)
|
||||
yield ones((4, 2), dtype=d)
|
||||
yield ones((4, 4), dtype=d)
|
||||
|
||||
# Scalars always error
|
||||
for _op in ["__matmul__", "__rmatmul__", "__imatmul__"]:
|
||||
for s in [1, 1.0, False]:
|
||||
for a in _matmul_array_vals():
|
||||
if (type(s) in [float, int] and a.dtype in _floating_dtypes
|
||||
or type(s) == int and a.dtype in _integer_dtypes):
|
||||
# Type promotion is valid, but @ is not allowed on 0-D
|
||||
# inputs, so the error is a ValueError
|
||||
assert_raises(ValueError, lambda: getattr(a, _op)(s))
|
||||
else:
|
||||
assert_raises(TypeError, lambda: getattr(a, _op)(s))
|
||||
|
||||
for x in _matmul_array_vals():
|
||||
for y in _matmul_array_vals():
|
||||
if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
|
||||
or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
|
||||
or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
|
||||
or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
|
||||
or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
|
||||
or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
|
||||
or x.dtype in _boolean_dtypes
|
||||
or y.dtype in _boolean_dtypes
|
||||
):
|
||||
assert_raises(TypeError, lambda: x.__matmul__(y))
|
||||
assert_raises(TypeError, lambda: y.__rmatmul__(x))
|
||||
assert_raises(TypeError, lambda: x.__imatmul__(y))
|
||||
elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]:
|
||||
assert_raises(ValueError, lambda: x.__matmul__(y))
|
||||
assert_raises(ValueError, lambda: y.__rmatmul__(x))
|
||||
if result_type(x.dtype, y.dtype) != x.dtype:
|
||||
assert_raises(TypeError, lambda: x.__imatmul__(y))
|
||||
else:
|
||||
assert_raises(ValueError, lambda: x.__imatmul__(y))
|
||||
else:
|
||||
x.__matmul__(y)
|
||||
y.__rmatmul__(x)
|
||||
if result_type(x.dtype, y.dtype) != x.dtype:
|
||||
assert_raises(TypeError, lambda: x.__imatmul__(y))
|
||||
elif y.shape[0] != y.shape[1]:
|
||||
# This one fails because x @ y has a different shape from x
|
||||
assert_raises(ValueError, lambda: x.__imatmul__(y))
|
||||
else:
|
||||
x.__imatmul__(y)
|
||||
|
||||
|
||||
def test_python_scalar_construtors():
|
||||
b = asarray(False)
|
||||
i = asarray(0)
|
||||
f = asarray(0.0)
|
||||
|
||||
assert bool(b) == False
|
||||
assert int(i) == 0
|
||||
assert float(f) == 0.0
|
||||
assert operator.index(i) == 0
|
||||
|
||||
# bool/int/float should only be allowed on 0-D arrays.
|
||||
assert_raises(TypeError, lambda: bool(asarray([False])))
|
||||
assert_raises(TypeError, lambda: int(asarray([0])))
|
||||
assert_raises(TypeError, lambda: float(asarray([0.0])))
|
||||
assert_raises(TypeError, lambda: operator.index(asarray([0])))
|
||||
|
||||
# bool/int/float should only be allowed on arrays of the corresponding
|
||||
# dtype
|
||||
assert_raises(ValueError, lambda: bool(i))
|
||||
assert_raises(ValueError, lambda: bool(f))
|
||||
|
||||
assert_raises(ValueError, lambda: int(b))
|
||||
assert_raises(ValueError, lambda: int(f))
|
||||
|
||||
assert_raises(ValueError, lambda: float(b))
|
||||
assert_raises(ValueError, lambda: float(i))
|
||||
|
||||
assert_raises(TypeError, lambda: operator.index(b))
|
||||
assert_raises(TypeError, lambda: operator.index(f))
|
||||
|
||||
|
||||
def test_device_property():
|
||||
a = ones((3, 4))
|
||||
assert a.device == 'cpu'
|
||||
|
||||
assert all(equal(a.to_device('cpu'), a))
|
||||
assert_raises(ValueError, lambda: a.to_device('gpu'))
|
||||
|
||||
assert all(equal(asarray(a, device='cpu'), a))
|
||||
assert_raises(ValueError, lambda: asarray(a, device='gpu'))
|
||||
|
||||
def test_array_properties():
|
||||
a = ones((1, 2, 3))
|
||||
b = ones((2, 3))
|
||||
assert_raises(ValueError, lambda: a.T)
|
||||
|
||||
assert isinstance(b.T, Array)
|
||||
assert b.T.shape == (3, 2)
|
||||
|
||||
assert isinstance(a.mT, Array)
|
||||
assert a.mT.shape == (1, 3, 2)
|
||||
assert isinstance(b.mT, Array)
|
||||
assert b.mT.shape == (3, 2)
|
||||
|
||||
def test___array__():
|
||||
a = ones((2, 3), dtype=int16)
|
||||
assert np.asarray(a) is a._array
|
||||
b = np.asarray(a, dtype=np.float64)
|
||||
assert np.all(np.equal(b, np.ones((2, 3), dtype=np.float64)))
|
||||
assert b.dtype == np.float64
|
||||
|
||||
def test_allow_newaxis():
|
||||
a = ones(5)
|
||||
indexed_a = a[None, :]
|
||||
assert indexed_a.shape == (1, 5)
|
||||
|
||||
def test_disallow_flat_indexing_with_newaxis():
|
||||
a = ones((3, 3, 3))
|
||||
with pytest.raises(IndexError):
|
||||
a[None, 0, 0]
|
||||
|
||||
def test_disallow_mask_with_newaxis():
|
||||
a = ones((3, 3, 3))
|
||||
with pytest.raises(IndexError):
|
||||
a[None, asarray(True)]
|
||||
|
||||
@pytest.mark.parametrize("shape", [(), (5,), (3, 3, 3)])
|
||||
@pytest.mark.parametrize("index", ["string", False, True])
|
||||
def test_error_on_invalid_index(shape, index):
|
||||
a = ones(shape)
|
||||
with pytest.raises(IndexError):
|
||||
a[index]
|
||||
|
||||
def test_mask_0d_array_without_errors():
|
||||
a = ones(())
|
||||
a[asarray(True)]
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"i", [slice(5), slice(5, 0), asarray(True), asarray([0, 1])]
|
||||
)
|
||||
def test_error_on_invalid_index_with_ellipsis(i):
|
||||
a = ones((3, 3, 3))
|
||||
with pytest.raises(IndexError):
|
||||
a[..., i]
|
||||
with pytest.raises(IndexError):
|
||||
a[i, ...]
|
||||
|
||||
def test_array_keys_use_private_array():
|
||||
"""
|
||||
Indexing operations convert array keys before indexing the internal array
|
||||
|
||||
Fails when array_api array keys are not converted into NumPy-proper arrays
|
||||
in __getitem__(). This is achieved by passing array_api arrays with 0-sized
|
||||
dimensions, which NumPy-proper treats erroneously - not sure why!
|
||||
|
||||
TODO: Find and use appropriate __setitem__() case.
|
||||
"""
|
||||
a = ones((0, 0), dtype=bool_)
|
||||
assert a[a].shape == (0,)
|
||||
|
||||
a = ones((0,), dtype=bool_)
|
||||
key = ones((0, 0), dtype=bool_)
|
||||
with pytest.raises(IndexError):
|
||||
a[key]
|
||||
@@ -0,0 +1,142 @@
|
||||
from numpy.testing import assert_raises
|
||||
import numpy as np
|
||||
|
||||
from .. import all
|
||||
from .._creation_functions import (
|
||||
asarray,
|
||||
arange,
|
||||
empty,
|
||||
empty_like,
|
||||
eye,
|
||||
full,
|
||||
full_like,
|
||||
linspace,
|
||||
meshgrid,
|
||||
ones,
|
||||
ones_like,
|
||||
zeros,
|
||||
zeros_like,
|
||||
)
|
||||
from .._dtypes import float32, float64
|
||||
from .._array_object import Array
|
||||
|
||||
|
||||
def test_asarray_errors():
|
||||
# Test various protections against incorrect usage
|
||||
assert_raises(TypeError, lambda: Array([1]))
|
||||
assert_raises(TypeError, lambda: asarray(["a"]))
|
||||
assert_raises(ValueError, lambda: asarray([1.0], dtype=np.float16))
|
||||
assert_raises(OverflowError, lambda: asarray(2**100))
|
||||
# Preferably this would be OverflowError
|
||||
# assert_raises(OverflowError, lambda: asarray([2**100]))
|
||||
assert_raises(TypeError, lambda: asarray([2**100]))
|
||||
asarray([1], device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: asarray([1], device="gpu"))
|
||||
|
||||
assert_raises(ValueError, lambda: asarray([1], dtype=int))
|
||||
assert_raises(ValueError, lambda: asarray([1], dtype="i"))
|
||||
|
||||
|
||||
def test_asarray_copy():
|
||||
a = asarray([1])
|
||||
b = asarray(a, copy=True)
|
||||
a[0] = 0
|
||||
assert all(b[0] == 1)
|
||||
assert all(a[0] == 0)
|
||||
a = asarray([1])
|
||||
b = asarray(a, copy=np._CopyMode.ALWAYS)
|
||||
a[0] = 0
|
||||
assert all(b[0] == 1)
|
||||
assert all(a[0] == 0)
|
||||
a = asarray([1])
|
||||
b = asarray(a, copy=np._CopyMode.NEVER)
|
||||
a[0] = 0
|
||||
assert all(b[0] == 0)
|
||||
assert_raises(NotImplementedError, lambda: asarray(a, copy=False))
|
||||
assert_raises(NotImplementedError,
|
||||
lambda: asarray(a, copy=np._CopyMode.IF_NEEDED))
|
||||
|
||||
|
||||
def test_arange_errors():
|
||||
arange(1, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: arange(1, device="gpu"))
|
||||
assert_raises(ValueError, lambda: arange(1, dtype=int))
|
||||
assert_raises(ValueError, lambda: arange(1, dtype="i"))
|
||||
|
||||
|
||||
def test_empty_errors():
|
||||
empty((1,), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: empty((1,), device="gpu"))
|
||||
assert_raises(ValueError, lambda: empty((1,), dtype=int))
|
||||
assert_raises(ValueError, lambda: empty((1,), dtype="i"))
|
||||
|
||||
|
||||
def test_empty_like_errors():
|
||||
empty_like(asarray(1), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: empty_like(asarray(1), device="gpu"))
|
||||
assert_raises(ValueError, lambda: empty_like(asarray(1), dtype=int))
|
||||
assert_raises(ValueError, lambda: empty_like(asarray(1), dtype="i"))
|
||||
|
||||
|
||||
def test_eye_errors():
|
||||
eye(1, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: eye(1, device="gpu"))
|
||||
assert_raises(ValueError, lambda: eye(1, dtype=int))
|
||||
assert_raises(ValueError, lambda: eye(1, dtype="i"))
|
||||
|
||||
|
||||
def test_full_errors():
|
||||
full((1,), 0, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: full((1,), 0, device="gpu"))
|
||||
assert_raises(ValueError, lambda: full((1,), 0, dtype=int))
|
||||
assert_raises(ValueError, lambda: full((1,), 0, dtype="i"))
|
||||
|
||||
|
||||
def test_full_like_errors():
|
||||
full_like(asarray(1), 0, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: full_like(asarray(1), 0, device="gpu"))
|
||||
assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype=int))
|
||||
assert_raises(ValueError, lambda: full_like(asarray(1), 0, dtype="i"))
|
||||
|
||||
|
||||
def test_linspace_errors():
|
||||
linspace(0, 1, 10, device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: linspace(0, 1, 10, device="gpu"))
|
||||
assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype=float))
|
||||
assert_raises(ValueError, lambda: linspace(0, 1, 10, dtype="f"))
|
||||
|
||||
|
||||
def test_ones_errors():
|
||||
ones((1,), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: ones((1,), device="gpu"))
|
||||
assert_raises(ValueError, lambda: ones((1,), dtype=int))
|
||||
assert_raises(ValueError, lambda: ones((1,), dtype="i"))
|
||||
|
||||
|
||||
def test_ones_like_errors():
|
||||
ones_like(asarray(1), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: ones_like(asarray(1), device="gpu"))
|
||||
assert_raises(ValueError, lambda: ones_like(asarray(1), dtype=int))
|
||||
assert_raises(ValueError, lambda: ones_like(asarray(1), dtype="i"))
|
||||
|
||||
|
||||
def test_zeros_errors():
|
||||
zeros((1,), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: zeros((1,), device="gpu"))
|
||||
assert_raises(ValueError, lambda: zeros((1,), dtype=int))
|
||||
assert_raises(ValueError, lambda: zeros((1,), dtype="i"))
|
||||
|
||||
|
||||
def test_zeros_like_errors():
|
||||
zeros_like(asarray(1), device="cpu") # Doesn't error
|
||||
assert_raises(ValueError, lambda: zeros_like(asarray(1), device="gpu"))
|
||||
assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype=int))
|
||||
assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype="i"))
|
||||
|
||||
def test_meshgrid_dtype_errors():
|
||||
# Doesn't raise
|
||||
meshgrid()
|
||||
meshgrid(asarray([1.], dtype=float32))
|
||||
meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float32))
|
||||
|
||||
assert_raises(ValueError, lambda: meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float64)))
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user