This commit is contained in:
Michael Murtaugh
2019-05-27 16:05:50 +02:00
commit b027ca341a
29 changed files with 17864 additions and 0 deletions

788
dist/index.js vendored Normal file
View File

@@ -0,0 +1,788 @@
var index = (function (exports) {
'use strict';
if (typeof document !== "undefined") {
var element = document.documentElement;
}
function tree_add(d) {
var x = +this._x.call(null, d),
y = +this._y.call(null, d);
return add(this.cover(x, y), x, y, d);
}
function add(tree, x, y, d) {
if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points
var parent,
node = tree._root,
leaf = {data: d},
x0 = tree._x0,
y0 = tree._y0,
x1 = tree._x1,
y1 = tree._y1,
xm,
ym,
xp,
yp,
right,
bottom,
i,
j;
// If the tree is empty, initialize the root as a leaf.
if (!node) return tree._root = leaf, tree;
// Find the existing leaf for the new point, or add it.
while (node.length) {
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree;
}
// Is the new point is exactly coincident with the existing point?
xp = +tree._x.call(null, node.data);
yp = +tree._y.call(null, node.data);
if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;
// Otherwise, split the leaf node until the old and new point are separated.
do {
parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4);
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
} while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm)));
return parent[j] = node, parent[i] = leaf, tree;
}
function addAll(data) {
var d, i, n = data.length,
x,
y,
xz = new Array(n),
yz = new Array(n),
x0 = Infinity,
y0 = Infinity,
x1 = -Infinity,
y1 = -Infinity;
// Compute the points and their extent.
for (i = 0; i < n; ++i) {
if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue;
xz[i] = x;
yz[i] = y;
if (x < x0) x0 = x;
if (x > x1) x1 = x;
if (y < y0) y0 = y;
if (y > y1) y1 = y;
}
// If there were no (valid) points, abort.
if (x0 > x1 || y0 > y1) return this;
// Expand the tree to cover the new points.
this.cover(x0, y0).cover(x1, y1);
// Add the new points.
for (i = 0; i < n; ++i) {
add(this, xz[i], yz[i], data[i]);
}
return this;
}
function tree_cover(x, y) {
if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points
var x0 = this._x0,
y0 = this._y0,
x1 = this._x1,
y1 = this._y1;
// If the quadtree has no extent, initialize them.
// Integer extent are necessary so that if we later double the extent,
// the existing quadrant boundaries dont change due to floating point error!
if (isNaN(x0)) {
x1 = (x0 = Math.floor(x)) + 1;
y1 = (y0 = Math.floor(y)) + 1;
}
// Otherwise, double repeatedly to cover.
else {
var z = x1 - x0,
node = this._root,
parent,
i;
while (x0 > x || x >= x1 || y0 > y || y >= y1) {
i = (y < y0) << 1 | (x < x0);
parent = new Array(4), parent[i] = node, node = parent, z *= 2;
switch (i) {
case 0: x1 = x0 + z, y1 = y0 + z; break;
case 1: x0 = x1 - z, y1 = y0 + z; break;
case 2: x1 = x0 + z, y0 = y1 - z; break;
case 3: x0 = x1 - z, y0 = y1 - z; break;
}
}
if (this._root && this._root.length) this._root = node;
}
this._x0 = x0;
this._y0 = y0;
this._x1 = x1;
this._y1 = y1;
return this;
}
function tree_data() {
var data = [];
this.visit(function(node) {
if (!node.length) do data.push(node.data); while (node = node.next)
});
return data;
}
function tree_extent(_) {
return arguments.length
? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1])
: isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]];
}
function Quad(node, x0, y0, x1, y1) {
this.node = node;
this.x0 = x0;
this.y0 = y0;
this.x1 = x1;
this.y1 = y1;
}
function tree_find(x, y, radius) {
var data,
x0 = this._x0,
y0 = this._y0,
x1,
y1,
x2,
y2,
x3 = this._x1,
y3 = this._y1,
quads = [],
node = this._root,
q,
i;
if (node) quads.push(new Quad(node, x0, y0, x3, y3));
if (radius == null) radius = Infinity;
else {
x0 = x - radius, y0 = y - radius;
x3 = x + radius, y3 = y + radius;
radius *= radius;
}
while (q = quads.pop()) {
// Stop searching if this quadrant cant contain a closer node.
if (!(node = q.node)
|| (x1 = q.x0) > x3
|| (y1 = q.y0) > y3
|| (x2 = q.x1) < x0
|| (y2 = q.y1) < y0) continue;
// Bisect the current quadrant.
if (node.length) {
var xm = (x1 + x2) / 2,
ym = (y1 + y2) / 2;
quads.push(
new Quad(node[3], xm, ym, x2, y2),
new Quad(node[2], x1, ym, xm, y2),
new Quad(node[1], xm, y1, x2, ym),
new Quad(node[0], x1, y1, xm, ym)
);
// Visit the closest quadrant first.
if (i = (y >= ym) << 1 | (x >= xm)) {
q = quads[quads.length - 1];
quads[quads.length - 1] = quads[quads.length - 1 - i];
quads[quads.length - 1 - i] = q;
}
}
// Visit this point. (Visiting coincident points isnt necessary!)
else {
var dx = x - +this._x.call(null, node.data),
dy = y - +this._y.call(null, node.data),
d2 = dx * dx + dy * dy;
if (d2 < radius) {
var d = Math.sqrt(radius = d2);
x0 = x - d, y0 = y - d;
x3 = x + d, y3 = y + d;
data = node.data;
}
}
}
return data;
}
function tree_remove(d) {
if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points
var parent,
node = this._root,
retainer,
previous,
next,
x0 = this._x0,
y0 = this._y0,
x1 = this._x1,
y1 = this._y1,
x,
y,
xm,
ym,
right,
bottom,
i,
j;
// If the tree is empty, initialize the root as a leaf.
if (!node) return this;
// Find the leaf node for the point.
// While descending, also retain the deepest parent with a non-removed sibling.
if (node.length) while (true) {
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
if (!(parent = node, node = node[i = bottom << 1 | right])) return this;
if (!node.length) break;
if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i;
}
// Find the point to remove.
while (node.data !== d) if (!(previous = node, node = node.next)) return this;
if (next = node.next) delete node.next;
// If there are multiple coincident points, remove just the point.
if (previous) return (next ? previous.next = next : delete previous.next), this;
// If this is the root point, remove it.
if (!parent) return this._root = next, this;
// Remove this leaf.
next ? parent[i] = next : delete parent[i];
// If the parent now contains exactly one leaf, collapse superfluous parents.
if ((node = parent[0] || parent[1] || parent[2] || parent[3])
&& node === (parent[3] || parent[2] || parent[1] || parent[0])
&& !node.length) {
if (retainer) retainer[j] = node;
else this._root = node;
}
return this;
}
function removeAll(data) {
for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
return this;
}
function tree_root() {
return this._root;
}
function tree_size() {
var size = 0;
this.visit(function(node) {
if (!node.length) do ++size; while (node = node.next)
});
return size;
}
function tree_visit(callback) {
var quads = [], q, node = this._root, child, x0, y0, x1, y1;
if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1));
while (q = quads.pop()) {
if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) {
var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
}
}
return this;
}
function tree_visitAfter(callback) {
var quads = [], next = [], q;
if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1));
while (q = quads.pop()) {
var node = q.node;
if (node.length) {
var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
}
next.push(q);
}
while (q = next.pop()) {
callback(q.node, q.x0, q.y0, q.x1, q.y1);
}
return this;
}
function defaultX(d) {
return d[0];
}
function tree_x(_) {
return arguments.length ? (this._x = _, this) : this._x;
}
function defaultY(d) {
return d[1];
}
function tree_y(_) {
return arguments.length ? (this._y = _, this) : this._y;
}
function quadtree(nodes, x, y) {
var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN);
return nodes == null ? tree : tree.addAll(nodes);
}
function Quadtree(x, y, x0, y0, x1, y1) {
this._x = x;
this._y = y;
this._x0 = x0;
this._y0 = y0;
this._x1 = x1;
this._y1 = y1;
this._root = undefined;
}
function leaf_copy(leaf) {
var copy = {data: leaf.data}, next = copy;
while (leaf = leaf.next) next = next.next = {data: leaf.data};
return copy;
}
var treeProto = quadtree.prototype = Quadtree.prototype;
treeProto.copy = function() {
var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1),
node = this._root,
nodes,
child;
if (!node) return copy;
if (!node.length) return copy._root = leaf_copy(node), copy;
nodes = [{source: node, target: copy._root = new Array(4)}];
while (node = nodes.pop()) {
for (var i = 0; i < 4; ++i) {
if (child = node.source[i]) {
if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)});
else node.target[i] = leaf_copy(child);
}
}
}
return copy;
};
treeProto.add = tree_add;
treeProto.addAll = addAll;
treeProto.cover = tree_cover;
treeProto.data = tree_data;
treeProto.extent = tree_extent;
treeProto.find = tree_find;
treeProto.remove = tree_remove;
treeProto.removeAll = removeAll;
treeProto.root = tree_root;
treeProto.size = tree_size;
treeProto.visit = tree_visit;
treeProto.visitAfter = tree_visitAfter;
treeProto.x = tree_x;
treeProto.y = tree_y;
var noop = {value: function() {}};
function dispatch() {
for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) {
if (!(t = arguments[i] + "") || (t in _)) throw new Error("illegal type: " + t);
_[t] = [];
}
return new Dispatch(_);
}
function Dispatch(_) {
this._ = _;
}
function parseTypenames(typenames, types) {
return typenames.trim().split(/^|\s+/).map(function(t) {
var name = "", i = t.indexOf(".");
if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i);
if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t);
return {type: t, name: name};
});
}
Dispatch.prototype = dispatch.prototype = {
constructor: Dispatch,
on: function(typename, callback) {
var _ = this._,
T = parseTypenames(typename + "", _),
t,
i = -1,
n = T.length;
// If no callback was specified, return the callback of the given type and name.
if (arguments.length < 2) {
while (++i < n) if ((t = (typename = T[i]).type) && (t = get(_[t], typename.name))) return t;
return;
}
// If a type was specified, set the callback for the given type and name.
// Otherwise, if a null callback was specified, remove callbacks of the given name.
if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback);
while (++i < n) {
if (t = (typename = T[i]).type) _[t] = set(_[t], typename.name, callback);
else if (callback == null) for (t in _) _[t] = set(_[t], typename.name, null);
}
return this;
},
copy: function() {
var copy = {}, _ = this._;
for (var t in _) copy[t] = _[t].slice();
return new Dispatch(copy);
},
call: function(type, that) {
if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2];
if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type);
for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args);
},
apply: function(type, that, args) {
if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type);
for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args);
}
};
function get(type, name) {
for (var i = 0, n = type.length, c; i < n; ++i) {
if ((c = type[i]).name === name) {
return c.value;
}
}
}
function set(type, name, callback) {
for (var i = 0, n = type.length; i < n; ++i) {
if (type[i].name === name) {
type[i] = noop, type = type.slice(0, i).concat(type.slice(i + 1));
break;
}
}
if (callback != null) type.push({name: name, value: callback});
return type;
}
var frame = 0, // is an animation frame pending?
timeout = 0, // is a timeout pending?
interval = 0, // are any timers active?
pokeDelay = 1000, // how frequently we check for clock skew
taskHead,
taskTail,
clockLast = 0,
clockNow = 0,
clockSkew = 0,
clock = typeof performance === "object" && performance.now ? performance : Date,
setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); };
function now() {
return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew);
}
function clearNow() {
clockNow = 0;
}
function Timer() {
this._call =
this._time =
this._next = null;
}
Timer.prototype = timer.prototype = {
constructor: Timer,
restart: function(callback, delay, time) {
if (typeof callback !== "function") throw new TypeError("callback is not a function");
time = (time == null ? now() : +time) + (delay == null ? 0 : +delay);
if (!this._next && taskTail !== this) {
if (taskTail) taskTail._next = this;
else taskHead = this;
taskTail = this;
}
this._call = callback;
this._time = time;
sleep();
},
stop: function() {
if (this._call) {
this._call = null;
this._time = Infinity;
sleep();
}
}
};
function timer(callback, delay, time) {
var t = new Timer;
t.restart(callback, delay, time);
return t;
}
function timerFlush() {
now(); // Get the current time, if not already set.
++frame; // Pretend weve set an alarm, if we havent already.
var t = taskHead, e;
while (t) {
if ((e = clockNow - t._time) >= 0) t._call.call(null, e);
t = t._next;
}
--frame;
}
function wake() {
clockNow = (clockLast = clock.now()) + clockSkew;
frame = timeout = 0;
try {
timerFlush();
} finally {
frame = 0;
nap();
clockNow = 0;
}
}
function poke() {
var now = clock.now(), delay = now - clockLast;
if (delay > pokeDelay) clockSkew -= delay, clockLast = now;
}
function nap() {
var t0, t1 = taskHead, t2, time = Infinity;
while (t1) {
if (t1._call) {
if (time > t1._time) time = t1._time;
t0 = t1, t1 = t1._next;
} else {
t2 = t1._next, t1._next = null;
t1 = t0 ? t0._next = t2 : taskHead = t2;
}
}
taskTail = t0;
sleep(time);
}
function sleep(time) {
if (frame) return; // Soonest alarm already set, or will be.
if (timeout) timeout = clearTimeout(timeout);
var delay = time - clockNow; // Strictly less than if we recomputed clockNow.
if (delay > 24) {
if (time < Infinity) timeout = setTimeout(wake, time - clock.now() - clockSkew);
if (interval) interval = clearInterval(interval);
} else {
if (!interval) clockLast = clock.now(), interval = setInterval(poke, pokeDelay);
frame = 1, setFrame(wake);
}
}
var initialRadius = 10,
initialAngle = Math.PI * (3 - Math.sqrt(5));
function forceSimulation(nodes) {
var simulation,
alpha = 1,
alphaMin = 0.001,
alphaDecay = 1 - Math.pow(alphaMin, 1 / 300),
alphaTarget = 0,
velocityDecay = 0.6,
forces = new Map(),
stepper = timer(step),
event = dispatch("tick", "end");
if (nodes == null) nodes = [];
function step() {
tick();
event.call("tick", simulation);
if (alpha < alphaMin) {
stepper.stop();
event.call("end", simulation);
}
}
function tick(iterations) {
var i, n = nodes.length, node;
if (iterations === undefined) iterations = 1;
for (var k = 0; k < iterations; ++k) {
alpha += (alphaTarget - alpha) * alphaDecay;
forces.forEach(function(force) {
force(alpha);
});
for (i = 0; i < n; ++i) {
node = nodes[i];
if (node.fx == null) node.x += node.vx *= velocityDecay;
else node.x = node.fx, node.vx = 0;
if (node.fy == null) node.y += node.vy *= velocityDecay;
else node.y = node.fy, node.vy = 0;
}
}
return simulation;
}
function initializeNodes() {
for (var i = 0, n = nodes.length, node; i < n; ++i) {
node = nodes[i], node.index = i;
if (node.fx != null) node.x = node.fx;
if (node.fy != null) node.y = node.fy;
if (isNaN(node.x) || isNaN(node.y)) {
var radius = initialRadius * Math.sqrt(i), angle = i * initialAngle;
node.x = radius * Math.cos(angle);
node.y = radius * Math.sin(angle);
}
if (isNaN(node.vx) || isNaN(node.vy)) {
node.vx = node.vy = 0;
}
}
}
function initializeForce(force) {
if (force.initialize) force.initialize(nodes);
return force;
}
initializeNodes();
return simulation = {
tick: tick,
restart: function() {
return stepper.restart(step), simulation;
},
stop: function() {
return stepper.stop(), simulation;
},
nodes: function(_) {
return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes;
},
alpha: function(_) {
return arguments.length ? (alpha = +_, simulation) : alpha;
},
alphaMin: function(_) {
return arguments.length ? (alphaMin = +_, simulation) : alphaMin;
},
alphaDecay: function(_) {
return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay;
},
alphaTarget: function(_) {
return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget;
},
velocityDecay: function(_) {
return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay;
},
force: function(name, _) {
return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name);
},
find: function(x, y, radius) {
var i = 0,
n = nodes.length,
dx,
dy,
d2,
node,
closest;
if (radius == null) radius = Infinity;
else radius *= radius;
for (i = 0; i < n; ++i) {
node = nodes[i];
dx = x - node.x;
dy = y - node.y;
d2 = dx * dx + dy * dy;
if (d2 < radius) closest = node, radius = d2;
}
return closest;
},
on: function(name, _) {
return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name);
}
};
}
// import { test } from './test.js';
// console.log("in index.js", test);
// test();
console.log("in index.js");
// import * as fetchJsonp from 'fetch-jsonp';
// import { jsonp } from 'jsonp';
var jsonp = require("jsonp");
console.log("force", forceSimulation);
console.log("fetchJsonp", fetchJsonp);
class Map$1 {
constructor (apiurl) {
this.apiurl = apiurl;
}
load (pagetitle) {
console.log("Map.load", pagetitle, this.apiurl);
jsonpP (this.apiurl).then(data => {
console.log("got data", data);
}).catch(err => {
console.log("ERROR", err);
});
}
}
// http://erg.activearchives.org/mw/api.php?action=query&prop=links&titles=Bienvenue_%C3%A0_l%E2%80%99erg
// http://erg.activearchives.org/w/api.php?action=query&prop=info&titles=Main%20Page
// Bienvenue_à_lerg
// http://erg.activearchives.org/mw/index.php/Bienvenue_%C3%A0_l%E2%80%99erg
exports.Map = Map$1;
return exports;
}({}));